8,750 research outputs found

    APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    Full text link
    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.Comment: 37 pages; 10 figures; 1 table: accepted for publication in PAS

    Framework for extracting and solving combination puzzles

    Get PDF
    Selles töös uuritakse, kuidas arvuti nĂ€gemisega seotud algoritme on vĂ”imalik rakendada objektide tuvastuse probleemile. TĂ€psemalt, kas arvuti nĂ€gemist on vĂ”imalik kasutada pĂ€ris maailma kombinatoorsete probleemide lahendamiseks. Idee kasutada arvuti rakendust probleemide lahendamiseks, tulenes tĂ€helepanekust, et probleemide lahenduse protsessid on kĂ”ik enamasti algoritmid. Sellest vĂ”ib jĂ€reldada, et arvutid sobivad algoritmiliste probleemide lahendamiseks paremini kui inimesed, kellel vĂ”ib sama ĂŒlesande peale kuluda kordades kauem. Siiski ei vaatle arvutid probleeme samamoodi nagu inimesed ehk nad ei saa probleeme analĂŒĂŒsida. Niisiis selle töö panuseks saab olema erinevate arvuti nĂ€gemise algoritmide uurimine, mille eesmĂ€rgiks on pĂ€ris maailma kombinatoorsete probleemide tĂ”lgendamine abstraktseteks struktuurideks, mida arvuti on vĂ”imeline mĂ”istma ning lahendama.Praegu on antud valdkonnas vĂ€he materiali, mis annab hea vĂ”imaluse panustada sellesse valdkonda. Seda saavutatakse lĂ€bi empiirilise uurimise testide kogumiku kujul selleks, et veenduda millised lĂ€henemised on kĂ”ige paremad. Nende eesmĂ€rkide saavutamiseks töötati lĂ€bi suur hulk arvuti nĂ€gemisega seotud materjale ning teooriat. Lisaks vĂ”eti ka arvesse reaalaja toimingute tĂ€htsus, mida vĂ”ib nĂ€ha erinevate liikumisest struktuuri eraldavate algoritmide(SLAM, PTAM) Ă”pingutest, mida hiljem edukalt kasutati navigatsiooni ja liitreaalsuse probleemide lahendamiseks. Siiski tuleb mainida, et neid algoritme ei kasutatud objektide omaduste tuvastamiseks.See töö uurib, kuidas saab erinevaid lĂ€henemisi kasutada selleks, et aidata vĂ€hekogenud kasutajaid kombinatoorsete pĂ€ris maailma probleemide lahendamisel. Lisaks tekib selle töö tulemusena vĂ”imalus tuvastada objektide liikumist (translatsioon, pöörlemine), mida saab kasutada koos virutaalse probleemi mudeliga, et parandada kasutaja kogemust.This thesis describes and investigates how computer vision algorithms and stereo vision algorithms may be applied to the problem of object detection. In particular, if computer vision can aid on puzzle solving. The idea to use computer application for puzzle solving came from the fact that all solution techniques are algorithms in the end. This fact leads to the conclusion that algorithms are well solved by machines, for instance, a machine requires milliseconds to compute the solution while a human can handle this in minutes or hours. Unfortunately, machines cannot see puzzles from human perspective thus cannot analyze them. Hence, the contribution of this thesis is to study different computer vision approaches from non-related solutions applied to the problem of translating the physical puzzle model into the abstract structure that can be understood and solved by a machine.Currently, there is a little written on this subject, therefore, there is a great chance to contribute. This is achieved through empirical research represented as a set of experiments in order to ensure which approaches are suitable. To accomplish these goals huge amount of computer vision theory has been studied. In addition, the relevance of real-time operations was taken into account. This was manifested through the Different real-time Structure from Motion algorithms (SLAM, PTAM) studies that were successfully applied for navigation or augmented reality problems; however, none of them for object characteristics extraction.This thesis examines how these different approaches can be applied to the given problem to help inexperienced users solve the combination puzzles. Moreover, it produces a side effect which is a possibility to track objects movement (rotation, translation) that can be used for manipulating a rendered game puzzle and increase interactivity and engagement of the user

    Deep ArUco: AI/ML-based Real-Time Marker Pose Tracking

    Get PDF
    Machine learning is commonly used in varoius types of machine vision. Convolutional neural network (CNN) are models that can be trained in different lighting, colors, changes and motion blur. This study generates data containing images with ArUco markers to be detected in different real-world scenarios. Environments created to detect the markers in this study is different lighting, motion blur, rain drops, different contrasts and fog. The ArUco markers will be detected by an existing detection algorithm using machine learning and artificial intelligence

    Tracking moving optima using Kalman-based predictions

    Get PDF
    The dynamic optimization problem concerns finding an optimum in a changing environment. In the field of evolutionary algorithms, this implies dealing with a timechanging fitness landscape. In this paper we compare different techniques for integrating motion information into an evolutionary algorithm, in the case it has to follow a time-changing optimum, under the assumption that the changes follow a nonrandom law. Such a law can be estimated in order to improve the optimum tracking capabilities of the algorithm. In particular, we will focus on first order dynamical laws to track moving objects. A vision-based tracking robotic application is used as testbed for experimental comparison
    • 

    corecore