461 research outputs found

    Dynamic Reconfiguration in Camera Networks: A Short Survey

    Get PDF
    There is a clear trend in camera networks towards enhanced functionality and flexibility, and a fixed static deployment is typically not sufficient to fulfill these increased requirements. Dynamic network reconfiguration helps to optimize the network performance to the currently required specific tasks while considering the available resources. Although several reconfiguration methods have been recently proposed, e.g., for maximizing the global scene coverage or maximizing the image quality of specific targets, there is a lack of a general framework highlighting the key components shared by all these systems. In this paper we propose a reference framework for network reconfiguration and present a short survey of some of the most relevant state-of-the-art works in this field, showing how they can be reformulated in our framework. Finally we discuss the main open research challenges in camera network reconfiguration

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Optimized Packet Scheduling in Multiview Video Navigation Systems

    Get PDF
    In multiview video systems, multiple cameras generally acquire the same scene from different perspectives, such that users have the possibility to select their preferred viewpoint. This results in large amounts of highly redundant data, which needs to be properly handled during encoding and transmission over resource-constrained channels. In this work, we study coding and transmission strategies in multicamera systems, where correlated sources send data through a bottleneck channel to a central server, which eventually transmits views to different interactive users. We propose a dynamic correlation-aware packet scheduling optimization under delay, bandwidth, and interactivity constraints. The optimization relies both on a novel rate-distortion model, which captures the importance of each view in the 3D scene reconstruction, and on an objective function that optimizes resources based on a client navigation model. The latter takes into account the distortion experienced by interactive clients as well as the distortion variations that might be observed by clients during multiview navigation. We solve the scheduling problem with a novel trellis-based solution, which permits to formally decompose the multivariate optimization problem thereby significantly reducing the computation complexity. Simulation results show the gain of the proposed algorithm compared to baseline scheduling policies. More in details, we show the gain offered by our dynamic scheduling policy compared to static camera allocation strategies and to schemes with constant coding strategies. Finally, we show that the best scheduling policy consistently adapts to the most likely user navigation path and that it minimizes distortion variations that can be very disturbing for users in traditional navigation systems

    Quality-of-Information Aware Sensing Node Characterisation for Optimised Energy Consumption in Visual Sensor Networks

    Get PDF
    Energy consumption is one of the primary concerns in a resource constrained visual sensor network (VSN) with wireless transceiving capability. The existing VSN design solutions under particular resource constrained scenarios are application-specific, whereas the degree of sensitivity of the resource constraints varies from one application to another. This limits the implementation of the existing energy efficient solutions within a VSN node, which may be considered to be a part of a heterogeneous network. This thesis aims to resolve the energy consumption issues faced within VSNs because of their resource constrained nature by proposing energy efficient solutions for sensing nodes characterisation. The heterogeneity of image capture and processing within a VSN can be adaptively reflected with a dynamic field-of-view (FoV) realisation. This is expected to allow the implementation of a generalised energy efficient solution that will adapt with the heterogeneity of the network. In this thesis, a FoV characterisation framework is proposed, which can assist design engineers during the pre-deployment phase in developing energy efficient VSNs. The proposed FoV characterisation framework provides efficient solutions for: 1) selecting suitable sensing range; 2) maximising spatial coverage; 3) minimising the number of required nodes; and 4) adaptive task classification. The task classification scheme proposed in this thesis exploits heterogeneity of the network and leads to an optimal distribution of tasks between visual sensing nodes. Soft decision criteria is exploited, and it is observed that for a given detection reliability, the proposed FoV characterisation framework provides energy efficient solutions which can be implemented within heterogeneous networks. In the post-deployment phase, the energy efficiency of a VSN for a given level of reliability can be enhanced by reconfiguring its nodes dynamically to achieve optimal configurations. Considering the dynamic realisation of quality-of-information (QoI), a strategy is devised for selecting suitable configurations of visual sensing nodes to reduce redundant visual content prior to transmission without sacrificing the expected information retrieval reliability. By incorporating QoI awareness using peak signal-to-noise ratio-based representative metric, the distributed nature of the proposed self-reconfiguration scheme accelerates the decision making process. This thesis also proposes a unified framework for node classification and dynamic self-reconfiguration in VSNs. For a given application, the unified framework provides a feasible solution to classify and reconfigure visual sensing nodes based on their FoV by exploiting the heterogeneity of targeted QoI within the sensing region. From the results, it is observed that for the second degree of heterogeneity in targeted QoI, the unified framework outperforms its existing counterparts and results in up to 72% energy savings with as low as 94% reliability. Within the context of resource constrained VSNs, the substantial energy savings achieved by the proposed unified framework can lead to network lifetime enhancement. Moreover, the reliability analysis demonstrates suitability of the unified framework for applications that need a desired level of QoI

    Characterization of Field-of-View for Energy Efficient Application-Aware Visual Sensor Networks

    Get PDF
    Energy consumption is one of the primary concerns in a resource-constrained visual sensor network (VSN). The existing VSN design solutions under particular resource-constrained scenarios are application specific, whereas the degree of sensitivity of the resource constraints varies from one application to another. This limits the implementation of the existing energy efficient solutions within a VSN node, which may be considered to be a part of a heterogeneous network. The heterogeneity of image capture and processing within a VSN can be adaptively reflected with a dynamic field-of-view (FoV) realization. This is expected to allow the implementation of a generalized energy efficient solution to adapt with the heterogeneity of the network. In this paper, an energy efficient FoV characterization framework is proposed, which can support a diverse range of applications. The context of adaptivity in the proposed FoV characterization framework is considered to be: 1) sensing range selection; 2) maximizing spatial coverage; 3) adaptive task classification; and 4) minimizing the number of required nodes. Soft decision criteria is exploited, and it is observed that for a given detection reliability, the proposed framework provides energy efficient solutions, which can be implemented within heterogeneous networks. It is also found that the proposed design solution for heterogeneous networks leads to 49.8% energy savings compared with the trivial design solution

    Towards end-to-end resource provisioning in Fog Computing over Low Power Wide Area Networks

    Get PDF
    Recently, with the advent of the Internet of Things (IoT), Smart Cities have emerged as a potential business opportunity for most cloud service providers. However, centralized cloud architectures cannot sustain the requirements imposed by many IoT services. High mobility coverage and low latency constraints are among the strictest requirements, making centralized solutions impractical. In response, theoretical foundations of Fog Computing have been introduced to set up a distributed cloud infrastructure by placing computational resources close to end-users. However, the acceptance of its foundational concepts is still in its early stages. A key challenge still to answer is Service Function Chaining (SFC) in Fog Computing, in which services are connected in a specific order forming a service chain to fully leverage on network softwarization. Also, Low Power Wide Area Networks (LPWANs) have been getting significant attention. Opposed to traditional wireless technologies, LPWANs are focused on low bandwidth communications over long ranges. Despite their tremendous potential, many challenges still arise concerning the deployment and management of these technologies, making their wide adoption difficult for most service providers. In this article, a Mixed Integer Linear Programming (MILP) formulation for the IoT service allocation problem is proposed, which takes SFC concepts, different LPWAN technologies and multiple optimization objectives into account. To the best of our knowledge, our work goes beyond the current state-of-the-art by providing a complete end-to-end (E2E) resource provisioning in Fog-cloud environments while considering cloud and wireless network requirements. Evaluations have been performed to evaluate in detail the proposed MILP formulation for Smart City use cases. Results show clear trade-offs between the different provisioning strategies. Our work can serve as a benchmark for resource provisioning research in Fog-cloud environments since the model approach is generic and can be applied to a wide range of IoT use cases

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems
    • …
    corecore