21,038 research outputs found

    Vision-based methods for state estimation and control of robotic systems with application to mobile and surgical robots

    Get PDF
    For autonomous systems that need to perceive the surrounding environment for the accomplishment of a given task, vision is a highly informative exteroceptive sensory source. When gathering information from the available sensors, in fact, the richness of visual data allows to provide a complete description of the environment, collecting geometrical and semantic information (e.g., object pose, distances, shapes, colors, lights). The huge amount of collected data allows to consider both methods exploiting the totality of the data (dense approaches), or a reduced set obtained from feature extraction procedures (sparse approaches). This manuscript presents dense and sparse vision-based methods for control and sensing of robotic systems. First, a safe navigation scheme for mobile robots, moving in unknown environments populated by obstacles, is presented. For this task, dense visual information is used to perceive the environment (i.e., detect ground plane and obstacles) and, in combination with other sensory sources, provide an estimation of the robot motion with a linear observer. On the other hand, sparse visual data are extrapolated in terms of geometric primitives, in order to implement a visual servoing control scheme satisfying proper navigation behaviours. This controller relies on visual estimated information and is designed in order to guarantee safety during navigation. In addition, redundant structures are taken into account to re-arrange the internal configuration of the robot and reduce its encumbrance when the workspace is highly cluttered. Vision-based estimation methods are relevant also in other contexts. In the field of surgical robotics, having reliable data about unmeasurable quantities is of great importance and critical at the same time. In this manuscript, we present a Kalman-based observer to estimate the 3D pose of a suturing needle held by a surgical manipulator for robot-assisted suturing. The method exploits images acquired by the endoscope of the robot platform to extrapolate relevant geometrical information and get projected measurements of the tool pose. This method has also been validated with a novel simulator designed for the da Vinci robotic platform, with the purpose to ease interfacing and employment in ideal conditions for testing and validation. The Kalman-based observers mentioned above are classical passive estimators, whose system inputs used to produce the proper estimation are theoretically arbitrary. This does not provide any possibility to actively adapt input trajectories in order to optimize specific requirements on the performance of the estimation. For this purpose, active estimation paradigm is introduced and some related strategies are presented. More specifically, a novel active sensing algorithm employing visual dense information is described for a typical Structure-from-Motion (SfM) problem. The algorithm generates an optimal estimation of a scene observed by a moving camera, while minimizing the maximum uncertainty of the estimation. This approach can be applied to any robotic platforms and has been validated with a manipulator arm equipped with a monocular camera

    MOMA: Visual Mobile Marker Odometry

    Full text link
    In this paper, we present a cooperative odometry scheme based on the detection of mobile markers in line with the idea of cooperative positioning for multiple robots [1]. To this end, we introduce a simple optimization scheme that realizes visual mobile marker odometry via accurate fixed marker-based camera positioning and analyse the characteristics of errors inherent to the method compared to classical fixed marker-based navigation and visual odometry. In addition, we provide a specific UAV-UGV configuration that allows for continuous movements of the UAV without doing stops and a minimal caterpillar-like configuration that works with one UGV alone. Finally, we present a real-world implementation and evaluation for the proposed UAV-UGV configuration

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing

    Mixed marker-based/marker-less visual odometry system for mobile robots

    Get PDF
    When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision‐based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision‐based odometry algorithm, which is capable of estimating the relative frame‐to‐frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off‐the‐shelf quadrotor via extensive experimental test

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy
    corecore