1,642 research outputs found

    Two-dimensional topological quantum walks in the momentum space of structured light

    Get PDF
    Quantum walks are powerful tools for quantum applications and for designing topological systems. Although they are simulated in a variety of platforms, genuine two-dimensional realizations are still challenging. Here we present an innovative approach to the photonic simulation of a quantum walk in two dimensions, where walker positions are encoded in the transverse wavevector components of a single light beam. The desired dynamics is obtained by means of a sequence of liquid-crystal devices, which apply polarization-dependent transverse "kicks" to the photons in the beam. We engineer our quantum walk so that it realizes a periodically-driven Chern insulator, and we probe its topological features by detecting the anomalous displacement of the photonic wavepacket under the effect of a constant force. Our compact, versatile platform offers exciting prospects for the photonic simulation of two-dimensional quantum dynamics and topological systems.Comment: Published version of the manuscrip

    Observation of topological transport quantization by dissipation in fast Thouless pumps

    Full text link
    Quantized dynamics is essential for natural processes and technological applications alike. The work of Thouless on quantized particle transport in slowly varying potentials (Thouless pumping) has played a key role in understanding that such quantization may be caused not only by discrete eigenvalues of a quantum system, but also by invariants associated with the nontrivial topology of the Hamiltonian parameter space. Since its discovery, quantized Thouless pumping has been believed to be restricted to the limit of slow driving, a fundamental obstacle for experimental applications. Here, we introduce non-Hermitian Floquet engineering as a new concept to overcome this problem. We predict that a topological band structure and associated quantized transport can be restored at driving frequencies as large as the system's band gap. The underlying mechanism is suppression of non-adiabatic transitions by tailored, time-periodic dissipation. We confirm the theoretical predictions by experiments on topological transport quantization in plasmonic waveguide arrays

    Phase-control of directed diffusion in a symmetric optical lattice

    Get PDF
    We demonstrate the phenomenon of directed diffusion in a symmetric periodic potential. This has been realized with cold atoms in a one-dimensional dissipative optical lattice. The stochastic process of optical pumping leads to a diffusive dynamics of the atoms through the periodic structure, while a zero-mean force which breaks the temporal symmetry of the system is applied by phase-modulating one of the lattice beams. The atoms are set into directed motion as a result of the breaking of the temporal symmetry of the system
    • …
    corecore