10,615 research outputs found

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy

    KEYFRAME-BASED VISUAL-INERTIAL SLAM USING NONLINEAR OPTIMIZATION

    Get PDF
    Abstract—The fusion of visual and inertial cues has become popular in robotics due to the complementary nature of the two sensing modalities. While most fusion strategies to date rely on filtering schemes, the visual robotics community has recently turned to non-linear optimization approaches for tasks such as visual Simultaneous Localization And Mapping (SLAM), following the discovery that this comes with significant advantages in quality of performance and computational complexity. Following this trend, we present a novel approach to tightly integrate visual measurements with readings from an Inertial Measurement Unit (IMU) in SLAM. An IMU error term is integrated with the landmark reprojection error in a fully probabilistic manner, resulting to a joint non-linear cost function to be optimized. Employing the powerful concept of ‘keyframes ’ we partially marginalize old states to maintain a bounded-sized optimization window, ensuring real-time operation. Comparing against both vision-only and loosely-coupled visual-inertial algorithms, our experiments confirm the benefits of tight fusion in terms of accuracy and robustness. I

    A factorization approach to inertial affine structure from motion

    Full text link
    We consider the problem of reconstructing a 3-D scene from a moving camera with high frame rate using the affine projection model. This problem is traditionally known as Affine Structure from Motion (Affine SfM), and can be solved using an elegant low-rank factorization formulation. In this paper, we assume that an accelerometer and gyro are rigidly mounted with the camera, so that synchronized linear acceleration and angular velocity measurements are available together with the image measurements. We extend the standard Affine SfM algorithm to integrate these measurements through the use of image derivatives

    A factorization approach to inertial affine structure from motion

    Full text link
    We consider the problem of reconstructing a 3-D scene from a moving camera with high frame rate using the affine projection model. This problem is traditionally known as Affine Structure from Motion (Affine SfM), and can be solved using an elegant low-rank factorization formulation. In this paper, we assume that an accelerometer and gyro are rigidly mounted with the camera, so that synchronized linear acceleration and angular velocity measurements are available together with the image measurements. We extend the standard Affine SfM algorithm to integrate these measurements through the use of image derivatives
    corecore