250 research outputs found

    Cam Drive Step Mechanism of a Quadruped Robot

    Get PDF
    Bionic quadruped robots received considerable worldwide research attention. For a quadruped robot walking with steady paces on a flat terrain, using a cam drive control mechanism instead of servomotors provides theoretical and practical benefits as it reduces the system weight, cost, and control complexities; thus it may be more cost beneficial for some recreational or household applications. This study explores the robot step mechanism including the leg and cam drive control systems based on studying the bone structure and the kinematic step sequences of dog. The design requirements for the cam drive robot legs have been raised, and the mechanical principles of the leg operating mechanism as well as the control parameters have been analyzed. A cam drive control system was constructed using three cams to control each leg. Finally, a four-leg demo robot was manufactured for experiments and it showed stable walking patterns on a flat floor

    System design of a quadrupedal galloping machine

    Full text link
    In this paper we present the system design of a machine that we have constructed to study a quadrupedal gallop gait. The gallop gait is the preferred high-speed gait of most cursorial quadrupeds. To gallop, an animal must generate ballistic trajectories with characteristic strong impacts, coordinate leg movements with asymmetric footfall phasing, and effectively use compliant members, all the while maintaining dynamic stability. In this paper we seek to further understand the primary biological features necessary for galloping by building and testing a robotic quadruped similar in size to a large goat or antelope. These features include high-speed actuation, energy storage, on-line learning control, and high-performance attitude sensing. Because body dynamics are primarily influenced by the impulses delivered by the legs, the successful design and control of single leg energetics is a major focus of this work. The leg stores energy during flight by adding tension to a spring acting across an articulated knee. During stance, the spring energy is quickly released using a novel capstan design. As a precursor to quadruped control, two intelligent strategies have been developed for verification on a one-legged system. The Levenberg-Marquardt on-line learning method is applied to a simple heuristic controller and provides good control over height and forward velocity. Direct adaptive fuzzy control, which requires no system modeling but is more computationally expensive, exhibits better response. Using these techniques we have been successful in operating one leg at speeds necessary for a dynamic gallop of a machine of this scale. Another necessary component of quadruped locomotion is high-resolution and high-bandwidth attitude sensing. The large ground impact accelerations, which cause problems for any single traditional sensor, are overcome through the use of an inertial sensing approach using updates from optical sensors and vehicle kinematics

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Low Cost Quadruped: MUTT

    Get PDF
    The field of educational and research robotics is alight with development platforms that fall short of being interesting and novel. Our goal was to create a quadruped for use as an entry level research project for students and educators. Reducing cost through the use of commercially available parts combined with rapid-prototyping, we built a platform that can be used to teach and learn legged locomotion for less than $600 (half the price of a Turtlebot 2 from OSRF). Our robot was able to walk in basic form using limited actuation; this was limited by the components we chose - specifically the motor controllers for part of the actuation. We expect that using components better suited to the task could accomplish what we set out to achieve

    2 Degree of Freedom Robotic Leg

    Get PDF
    Professor Xing, an assistant professor at Cal Poly, proposed the 2 DOF Robotic Leg project for this quarter’s senior project class. The project is to build a robotic leg attached at the hip to a stand, which will be used as a teaching tool and eventually help develop Cal Poly’s very own robotic quadruped. Since this project has multiple uses after its completion, there are multiple customers that it must perform well for: the Cal Poly Mechanical Engineering (ME) Department, the ME Lab instructors, and the students. The Scope of Work (Sections 2 & 3) is composed of 2 main sections: Background and Objectives. The Background covers all research regarding similar products and dynamic systems while the Objectives outline the problem statement and the team’s objectives required to complete this project. The following sections are comprised Team Capy’s process of achieving those objectives throughout the yearlong project. This is described in detail and broken into the following sections: Concept Design, Final Design, Manufacturing plan, Design Verification Plan, Project Management, and Conclusion. This project’s scope has significantly changed throughout the year, resulting in a very iterative design process that led to excellent results. This document details every step of that process, leading to the development of the final design and its manufacturing process

    Sabertooth: A High Mobility Quadrupedal Robot Platform

    Get PDF
    Team Sabertooth aimed to design and realize an innovative high mobility, quadrupedal robot platform capable of delivering a payload over terrain otherwise impassable by wheeled vehicles at a speed of 5 feet per second. The robot uses a spring system in each of its legs for energy efficient locomotion. The 4ft x 3ft x 3ft freestanding four legged robot weighs approximately 300 pounds with an additional payload capacity of 30 pounds. An important feature of the robot is the passive, two degree of freedom body joint which allows flexibility in terms of robot motions for going around tight corners and ascending stairs. A distributed control and software architecture is used for world mapping, path planning and motion control

    SWheg: A Wheel-Leg Transformable Robot With Minimalist Actuator Realization

    Full text link
    This article presents the design, implementation, and performance evaluation of SWheg, a novel modular wheel-leg transformable robot family with minimalist actuator realization. SWheg takes advantage of both wheeled and legged locomotion by seamlessly integrating them on a single platform. In contrast to other designs that use multiple actuators, SWheg uses only one actuator to drive the transformation of all the wheel-leg modules in sync. This means an N-legged SWheg robot requires only N+1 actuators, which can significantly reduce the cost and malfunction rate of the platform. The tendon-driven wheel-leg transformation mechanism based on a four-bar linkage can perform fast morphology transitions between wheels and legs. We validated the design principle with two SWheg robots with four and six wheel-leg modules separately, namely Quadrupedal SWheg and Hexapod SWheg. The design process, mechatronics infrastructure, and the gait behavioral development of both platforms were discussed. The performance of the robot was evaluated in various scenarios, including driving and turning in wheeled mode, step crossing, irregular terrain passing, and stair climbing in legged mode. The comparison between these two platforms was also discussed

    Sabertooth: A High Mobility Quadrupedal Robot Platform

    Get PDF
    Team Sabertooth aimed to design and realize an innovative high mobility, quadrupedal robot capable of delivering a payload over terrain impassable by wheeled vehicles at a speed of 5fps. The robot is designed to ascend and descend stairs. The robot uses a spring system in each of its legs for energy efficient locomotion. The 4\u27x3\u27x3\u27 freestanding four legged robot weighs approximately 300lbs with an additional payload capacity of 30lbs. The passive two degree of freedom body joint allows flexibility in terms of robot motion for going around tight corners and ascending stairs. The system integrates sensors for staircase recognition, obstacle avoidance, and distance calculation. A distributed control and software architecture is used for world mapping, path planning and motion control

    Low Cost Quadruped: MUTT

    Get PDF
    The field of educational and research robotics is alight with development platforms that fall short of being interesting and novel. Our goal was to create a quadruped for use as an entry level research project for students and educators. Reducing cost through the use of commercially available parts combined with rapid-prototyping, we built a platform that can be used to teach and learn legged locomotion for less than $600 (half the price of a Turtlebot 2 from OSRF). Our robot was able to walk in basic form using limited actuation; this was limited by the components we chose - specifically the motor controllers for part of the actuation. We expect that using components better suited to the task could accomplish what we set out to achieve
    corecore