33 research outputs found

    Call-by-Value Lambda-calculus and LJQ

    Get PDF
    Accepté pour publication dans J. Logic Comput. ; 24 pagesLJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premiss of the usual left introduction rule for implication. In a previous paper we discussed its history (going back to about 1950, or beyond) and presented its basic theory and some applications; here we discuss in detail its relation to call-by-value reduction in lambda calculus, establishing a connection between LJQ and the CBV calculus Lambda_C of Moggi. In particular, we present an equational correspondence between these two calculi forming a bijection between the two sets of normal terms, and allowing reductions in each to be simulated by reductions in the other

    Focusing and Polarization in Intuitionistic Logic

    Get PDF
    A focused proof system provides a normal form to cut-free proofs that structures the application of invertible and non-invertible inference rules. The focused proof system of Andreoli for linear logic has been applied to both the proof search and the proof normalization approaches to computation. Various proof systems in literature exhibit characteristics of focusing to one degree or another. We present a new, focused proof system for intuitionistic logic, called LJF, and show how other proof systems can be mapped into the new system by inserting logical connectives that prematurely stop focusing. We also use LJF to design a focused proof system for classical logic. Our approach to the design and analysis of these systems is based on the completeness of focusing in linear logic and on the notion of polarity that appears in Girard's LC and LU proof systems

    The Logical Essence of Compiling with Continuations

    Get PDF

    Computation in Focused Intuitionistic Logic

    Get PDF
    International audienceWe investigate the control of evaluation strategies in a variant of the λ-calculus derived through the Curry-Howard correspondence from LJF, a sequent calculus for intuitionistic logic implementing the focusing technique. The proof theory of focused intuitionistic logic yields a single calculus in which a number of known λ-calculi appear as subsystems obtained by restricting types to a certain fragment of LJF. In particular, standard λ-calculi as well as the call-by-push-value calculus are analysed using this framework, and we relate cut elimination for LJF to a new abstract machine subsuming well-known machines for these different strategies

    Towards a canonical classical natural deduction system

    Get PDF
    This paper studies a new classical natural deduction system, presented as a typed calculus named \lml. It is designed to be isomorphic to Curien-Herbelin's calculus, both at the level of proofs and reduction, and the isomorphism is based on the correct correspondence between cut (resp. left-introduction) in sequent calculus, and substitution (resp. elimination) in natural deduction. It is a combination of Parigot's λμ\lambda\mu-calculus with the idea of ``coercion calculus'' due to Cervesato-Pfenning, accommodating let-expressions in a surprising way: they expand Parigot's syntactic class of named terms. This calculus aims to be the simultaneous answer to three problems. The first problem is the lack of a canonical natural deduction system for classical logic. \lml is not yet another classical calculus, but rather a canonical reflection in natural deduction of the impeccable treatment of classical logic by sequent calculus. The second problem is the lack of a formalization of the usual semantics of Curien-Herbelin's calculus, that explains co-terms and cuts as, respectively, contexts and hole-filling instructions. The mentioned isomorphism is the required formalization, based on the precise notions of context and hole-expression offered by \lml. The third problem is the lack of a robust process of ``read-back'' into natural deduction syntax of calculi in the sequent calculus format, that affects mainly the recent proof-theoretic efforts of derivation of λ\lambda-calculi for call-by-value. An isomorphic counterpart to the QQ-subsystem of Curien-Herbelin's-calculus is derived, obtaining a new λ\lambda-calculus for call-by-value, combining control and let-expressions.Fundação para a Ciência e a Tecnologia (FCT

    A short proof that adding some permutation rules to beta preserves SN

    Get PDF
    I show that, if a term is SNSN for β\beta, it remains SNSN when some permutation rules are added

    Call-by-Value solvability, revisited

    Get PDF
    International audienceIn the call-by-value lambda-calculus solvable terms have been characterised by means of call-by-name reductions, which is disappointing and requires complex reasonings. We introduce the value substitution lambda-calculus, a simple calculus borrowing ideas from Herbelin and Zimmerman's call-by-value lambda-CBV calculus and from Accattoli and Kesner's substitution calculus lambda-sub. In this new setting, we characterise solvable terms as those terms having normal form with respect to a suitable restriction of the rewriting relation

    The call-by-value Lambda-Calculus with generalized applications

    Get PDF
    The lambda-calculus with generalized applications is the Curry-Howard counterpart to the system of natural deduction with generalized elimination rules for intuitionistic implicational logic. In this paper we identify a call-by-value variant of the system and prove confluence, strong normalization, and standardization. In the end, we show that the cbn and cbv variants of the system simulate each other via mappings based on extensions of the "protecting-by-a-lambda" compilation technique.FCT -Fundação para a Ciência e a Tecnologia(UID/MAT/00013/2013

    Separating Functional Computation from Relations

    Get PDF
    The logical foundation of arithmetic generally starts with a quantificational logic over relations. Of course, one often wishes to have a formal treatment of functions within this setting. Both Hilbert and Church added choice operators (such as the epsilon operator) to logic in order to coerce relations that happen to encode functions into actual functions. Others have extended the term language with confluent term rewriting in order to encode functional computation as rewriting to a normal form. We take a different approach that does not extend the underlying logic with either choice principles or with an equality theory. Instead, we use the familiar two-phase construction of focused proofs and capture functional computation entirely within one of these phases. As a result, our logic remains purely relational even when it is computing functions

    Towards a canonical classical natural deduction system

    Get PDF
    Preprint submitted to Elsevier, 6 July 2012This paper studies a new classical natural deduction system, presented as a typed calculus named lambda-mu- let. It is designed to be isomorphic to Curien and Herbelin's lambda-mu-mu~-calculus, both at the level of proofs and reduction, and the isomorphism is based on the correct correspondence between cut (resp. left-introduction) in sequent calculus, and substitution (resp. elimination) in natural deduction. It is a combination of Parigot's lambda-mu -calculus with the idea of "coercion calculus" due to Cervesato and Pfenning, accommodating let-expressions in a surprising way: they expand Parigot's syntactic class of named terms. This calculus and the mentioned isomorphism Theta offer three missing components of the proof theory of classical logic: a canonical natural deduction system; a robust process of "read-back" of calculi in the sequent calculus format into natural deduction syntax; a formalization of the usual semantics of the lambda-mu-mu~-calculus, that explains co-terms and cuts as, respectively, contexts and hole- filling instructions. lambda-mu-let is not yet another classical calculus, but rather a canonical reflection in natural deduction of the impeccable treatment of classical logic by sequent calculus; and provides the "read-back" map and the formalized semantics, based on the precise notions of context and "hole-expression" provided by lambda-mu-let. We use "read-back" to achieve a precise connection with Parigot's lambda-mu , and to derive lambda-calculi for call-by-value combining control and let-expressions in a logically founded way. Finally, the semantics , when fully developed, can be inverted at each syntactic category. This development gives us license to see sequent calculus as the semantics of natural deduction; and uncovers a new syntactic concept in lambda-mu-mu~ ("co-context"), with which one can give a new de nition of eta-reduction
    corecore