102 research outputs found

    Interference management and system optimisation for Femtocells technology in LTE and future 4G/5G networks

    Get PDF
    Femtocells are seen to be the future of Long Term Evaluation (LTE) networks to improve the performance of indoor, outdoor and cell edge User Equipments (UEs). These small cells work efficiently in areas that suffer from high penetration loss and path-loss to improve the coverage area. It is said that 30% of total served UEs in LTE networks are vehicular, which poses challenges in LTE networks due to their high mobility, high vehicular penetration loss (VPL), high path loss and high interference. Therefore, self-optimising and dynamic solutions are required to incorporate more intelligence into the current standard of LTE system. This makes the network more adaptive, able to handle peak data demands and cope with the increasing capacity for vehicular UEs. This research has drawn a performance comparison between vehicular UEs who are served by Mobile-Femto, Fixed-Femto and eNB under different VPL scales that range between highs and lows e.g. 0dB, 25dB and 40dB. Deploying Mobile-Femto under high VPLs has improved the vehicular UE Ergodic capacity by 1% and 5% under 25dB and 40dB VPL respectively as compared to other eNB technologies. A noticeable improvement is also seen in signal strength, throughput and spectral efficiency. Furthermore, this research discusses the co-channel interference between the eNB and the Mobile-Femto as both share the same resources and bandwidth. This has created an interference issue from the downlink signals of each other to their UEs. There were no previous solutions that worked efficiently in cases where UEs and base stations are mobile. Therefore, this research has adapted an efficient frequency reuse scheme that worked dynamically over distance and achieved improved results in the signal strength and throughput of Macro and Mobile-Femto UE as compared to previous interference management schemes e.g. Fractional Frequency Reuse factor1 (NoFFR-3) and Fractional Frequency Reuse factor3 (FFR-3). Also, the achieved results show that implementing the proposed handover scheme together with the Mobile-Femto deployment has reduced the dropped calls probability by 7% and the blocked calls probability by 14% compared to the direct transmission from the eNB. Furthermore, the outage signal probabilities under different VPLs have been reduced by 1.8% and 2% when the VPLs are 25dB and 40dB respectively compared to other eNB technologies

    Novel group handover mechanism for cooperative and coordinated mobile femtocells technology in railway environment

    Get PDF
    Recently, the Mobile Femto (MF) Technology has been debated in many research papers to be a promising solution that will dominate future networks. This small cell technology plays a major role in supporting and maintaining network connectivity, enhancing the communication service as well as user experience for passengers in High-Speed Trains (HSTs) environments. Within the railway environment, there are many MF Technologies placed on HSTs to enhance the train passengers’ internet experience. Those users are more affected by the high penetration loss, path loss, dropped signals, and the unnecessary number of Handovers (HOs). Therefore, it is more appropriate to serve those mobile users by the in-train femtocell technology than being connected to the outside Access Points (APs) or Base Stations (BSs). Hence, having a series of MFs (called Cooperative and Coordinated MFs -CCMF) installed inside the train carriages has been seen to be a promising solution for train environments and future networks. The CCMF Technologies establish Backhaul (BH) links with the serving mother BS (DeNB). However, one of the main drawbacks in such an environment is the frequent and unnecessary number of HO procedures for the MFs and train passengers. Thus, this paper proposes an efficient Group HO mechanism that will improve signal connection and mitigate the impact of a signal outage when train carriages move from one serving cell to another. Unlike most work that uses Fixed Femtocell (FF) architecture, this work uses MF architecture. The achieved results via Matlab simulator show that the proposed HO scheme has achieved less outage probability of 0.055 when the distance between the MF and mobile users is less than 10 m compared to the signal outage probability of the conventional HO scheme. More results have shown that the dropping calls probability has been reduced when mobile users are connected to the MF compared to the direct transmission from the eNB. That is in turn has have improved the call duration of mobile UEs and reduced the dropping calls probability for mobile users who are connected to the MF compared to eNB direct connection UEs

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v

    Performance evaluation of mobile users served by fixed and mobile femtocells in LTE networks

    Get PDF
    This paper investigates the concept of Mobile Femtocell with considering the feasibility of deploying Mobile Femtocells in public transportation vehicles such as trains, buses or private cars that form its own cell inside vehicles to serve vehicular and mobile User Equipments. This study is the launch of cell-edge mobile users who have always suffered degradation in the Quality of Service (QoS). Therefore, an investigation on the performance of LTE cell-edge mobile User Equipment e.g. users’ throughput, SINR, SNR, SIR, spectral efficiency and Handover performance, have been considered with deploying Fixed Femtocells and Mobile Femtocells in Long Term Evolution network. Two scenarios have been proposed in this study; Fixed Femtocells with mobile users and Mobile Femtocells with mobile users. More scenarios maybe considered in the case of Mobile Femtocell’s handover procedure. MATLAB simulation has been used for the purpose of simulating the designed scenarios and implementing the integrated mathematical equations. The simulated results have demonstrated the benefits of having Mobile Femtocells over the Fixed Femtocells in terms of mobile User Equipments’ performance

    Performance evaluation of mobile users served by fixed and mobile femtocells in LTE networks

    Get PDF
    This paper investigates the concept of Mobile Femtocell with considering the feasibility of deploying Mobile Femtocells in public transportation vehicles such as trains, buses or private cars that form its own cell inside vehicles to serve vehicular and mobile User Equipments. This study is the launch of cell-edge mobile users who have always suffered degradation in the Quality of Service (QoS). Therefore, an investigation on the performance of LTE cell-edge mobile User Equipment e.g. users’ throughput, SINR, SNR, SIR, spectral efficiency and Handover performance, have been considered with deploying Fixed Femtocells and Mobile Femtocells in Long Term Evolution network. Two scenarios have been proposed in this study; Fixed Femtocells with mobile users and Mobile Femtocells with mobile users. More scenarios maybe considered in the case of Mobile Femtocell’s handover procedure. MATLAB simulation has been used for the purpose of simulating the designed scenarios and implementing the integrated mathematical equations. The simulated results have demonstrated the benefits of having Mobile Femtocells over the Fixed Femtocells in terms of mobile User Equipments’ performance

    Mobility management for vehicular user equipment in LTE/mobile femtocell networks

    Get PDF
    Vehicular User Equipment (UE) performance during mobility faces two issues relating to signaling and transmission, namely Handover (HO) and link adaptation. This paper shows that both processes are experiencing degradation during mobility and that vehicular UEs suffer from call drops and loss of connections. Therefore, this work presents an effective technique using Mobile-Femtos to improve vehicular UEs' HO process and link quality. Results show that vehicular UEs attached to a Mobile-Femto achieved better signalling and Link Ergodic capacity and as a consequence the outage probability was reduced. The achieved results indicated that deploying Mobile-Femtos under 25dB Vehicular Penetration Loss (VPL) has improved the vehicular UE Link Ergodic capacity by 1% and reduced the signal outage probability by 1.8% compared to the eNB direct transmission. Consequently, Drop Calls Probability (DCP) and Block Calls Probability (BCP) have been reduced by 7% and 14% respectively compared to the direct transmission from the eNB

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Optimizing handover performance in LTE networks containing relays

    Get PDF
    The purpose of relays in Long Term Evolution (LTE) networks is to provide coverage extension and higher bitrates for cell edge users. Similar to any other new nodes in the network, relays bring new challenges. One of these challenges concerns mobility. More specifically, back and forth data transmission between the Donor Evolved NodeB (DeNB) and the Relay (RN) during the handover can occur. For the services that are sensitive to packet loss, receiving all the packets at the destination is crucial. In cellular networks when the User Equipment (UE) detaches from the old cell and attaches to the new cell, it faces a short disruption. In the disruption time when the UE is not connected to anywhere, packets can be easily lost. To avoid the consequences of these packet losses, the data forwarding concept was developed and the lost packets in handover were identified and forwarded to the destination. The forwarded packets would be transmitted to the UE as it becomes attached to the new cell. In the networks using the relays all the packets should still transfer via the DeNB. If the UE is connected to the RN and is handed over to a new cell, the unacknowledged packets between the RN and the UE which are still in the RN buffer should be transmitted back to the DeNB and onwards to the target afterwards. Furthermore, the ongoing packets in S1 interface are transmitted through the old path until the path switch occurs. This data transfer from the DeNB to the RN and again back to the DeNB increases the latency and occupies the resources in the Un interface. In this thesis work the problem of back and forth forwarding is studied. Different solutions to overcome this challenge are proposed and simulations are performed to evaluate the proposals. The evaluated approaches showed up to considerable performance enhancement compared to the previous solutions
    • …
    corecore