144 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    An improved multi-agent simulation methodology for modelling and evaluating wireless communication systems resource allocation algorithms

    Get PDF
    Multi-Agent Systems (MAS) constitute a well known approach in modelling dynamical real world systems. Recently, this technology has been applied to Wireless Communication Systems (WCS), where efficient resource allocation is a primary goal, for modelling the physical entities involved, like Base Stations (BS), service providers and network operators. This paper presents a novel approach in applying MAS methodology to WCS resource allocation by modelling more abstract entities involved in WCS operation, and especially the concurrent network procedures (services). Due to the concurrent nature of a WCS, MAS technology presents a suitable modelling solution. Services such as new call admission, handoff, user movement and call termination are independent to one another and may occur at the same time for many different users in the network. Thus, the required network procedures for supporting the above services act autonomously, interact with the network environment (gather information such as interference conditions), take decisions (e.g. call establishment), etc, and can be modelled as agents. Based on this novel simulation approach, the agent cooperation in terms of negotiation and agreement becomes a critical issue. To this end, two negotiation strategies are presented and evaluated in this research effort and among them the distributed negotiation and communication scheme between network agents is presented to be highly efficient in terms of network performance. The multi-agent concept adapted to the concurrent nature of large scale WCS is, also, discussed in this paper

    Aspects of self-organisation in cellular networks

    Get PDF

    Efficient channel borrowing strategy for real-time services in multimedia wireless networks

    Get PDF
    An efficient resource sharing strategy is proposed for multimedia wireless networks. Assume the channel resource in a wireless system is partitioned into two sets: one for voice calls and one for video calls. In the proposed channel borrowing strategy, voice calls can borrow channels from those pre-allocated to video calls temporarily when all voice channels are busy. A threshold type decision policy is designed such that the channel borrowing request will be granted only if the quality of service (QoS) requirement on video call blocking will not be violated during the duration of channel lending. An analytical model is constructed for evaluating the performance of the channel borrowing strategy in a simplified wireless system and is verified by computer simulations. We found that the proposed channel borrowing scheme can significantly reduce the voice call blocking probability while the increase in video call blocking probability is insignificant.published_or_final_versio

    A Comparative Study of Prioritized Handoff Schemes with Guard Channels in Wireless Cellular Networks

    Get PDF
    Mobility management has always been the main challenge in most mobile systems. It involves the management of network radio channel resource capacity for the purpose of achieving optimum quality of service (QoS) standard. In this era of wireless Personal Communication Networks such as Global System for Mobile Communication (GSM), Wireless Asynchronous Transfer Mode (WATM), Universal Mobile Telecommunication System (UMTS), there is a continuous increase in demand for network capacity. In order to accommodate the increased demand for network capacity (radio resource) over the wireless medium, cell sizes are reduced. As a result of such reduction in cell sizes, handoffs occur more frequently, and thereby result in increased volume of handoff related signaling. Therefore, a handoff scheme that can handle the increased signaling load while sustaining the standard QoS parameters is required.This work presents a comparative analysis of four popular developed handoff schemes. New call blocking probability, forced termination probability and throughput are the QoS parameters employed in comparing the four schemes. The four schemes are:RCS-GC,MRCS-GC, NCBS-GC, and APS-GC. NCBS-GChas the leased new call blocking probability while APS-GC has the worst. In terms of forced termination probability, MRCS-GC has the best result, whileRCS-GChas the worst scheme.MRCS-GC delivers the highest number of packets per second while APS-GC delivers the least. These performance metrics are computed by using the analytical expressions developed for these metrics in the considered models in a Microsoft Excel spreadsheet environment.http://dx.doi.org/10.4314/njt.v34i3.2

    Cellular radio networks systems engineering.

    Get PDF
    by Kwan Lawrence Yeung.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 115-[118]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Cellular Concept --- p.1Chapter 1.2 --- Fixed Channel Assignment --- p.2Chapter 1.3 --- Dynamic Channel Assignment --- p.2Chapter 1.4 --- Performance Evaluation of DC A --- p.3Chapter 1.5 --- Han doff Analysis --- p.3Chapter 1.6 --- Mobile Location Tracking Strategies --- p.3Chapter 1.7 --- QOS Measure --- p.4Chapter 1.8 --- Organization of Thesis --- p.4Chapter 2 --- Optimization of Channel Assignment I --- p.6Chapter 2.1 --- Introduction --- p.6Chapter 2.2 --- Generating Compact Patterns --- p.7Chapter 2.2.1 --- Regular size cells --- p.7Chapter 2.2.2 --- Irregular size cells --- p.7Chapter 2.3 --- Nominal Channel Allocation Methods --- p.10Chapter 2.3.1 --- Compact pattern allocation --- p.10Chapter 2.3.2 --- Greedy allocation --- p.11Chapter 2.3.3 --- Hybrid allocation --- p.11Chapter 2.3.4 --- The K-Optimal variations --- p.11Chapter 2.3.5 --- Backtracking strategies --- p.12Chapter 2.4 --- Performance Comparison --- p.12Chapter 2.5 --- Conclusions --- p.16Chapter 3 --- Optimization of Channel Assignment II --- p.18Chapter 3.1 --- Introduction --- p.18Chapter 3.2 --- Basic Heuristics --- p.20Chapter 3.2.1 --- Two methods for cell ordering --- p.20Chapter 3.2.2 --- Two channel assignment strategies --- p.20Chapter 3.3 --- Channel Assignments with Cell Re-ordering --- p.21Chapter 3.3.1 --- Four channel assignment algorithms --- p.21Chapter 3.3.2 --- Complexity --- p.22Chapter 3.3.3 --- An example --- p.22Chapter 3.4 --- Channel Assignment at Hotspots --- p.23Chapter 3.4.1 --- Strategy F vs strategy R --- p.23Chapter 3.4.2 --- Strategy FR --- p.24Chapter 3.5 --- Numerical Examples --- p.25Chapter 3.5.1 --- "Performance of algorithms F/CR,F/DR,R/CR and R/DR" --- p.26Chapter 3.5.2 --- Effect of X & Y on performance of algorithms FR/CR & FR/DR --- p.26Chapter 3.5.3 --- Performance of algorithms FR/CR & FR/DR --- p.27Chapter 3.6 --- Conclusions --- p.27Chapter 4 --- Compact Pattern Based DCA --- p.29Chapter 4.1 --- Introduction --- p.29Chapter 4.2 --- Compact Pattern Channel Assignment --- p.30Chapter 4.2.1 --- Data structures --- p.30Chapter 4.2.2 --- Two functions --- p.31Chapter 4.2.3 --- Two phases --- p.32Chapter 4.3 --- Performance Evaluation --- p.33Chapter 4.4 --- Conclusions --- p.36Chapter 5 --- Cell Group Decoupling Analysis --- p.37Chapter 5.1 --- Introduction --- p.37Chapter 5.2 --- One-Dimensional Cell Layout --- p.38Chapter 5.2.1 --- Problem formulation --- p.38Chapter 5.2.2 --- Calculation of blocking probability --- p.39Chapter 5.3 --- Two-Dimensional Cell Layout --- p.41Chapter 5.3.1 --- Problem formulation --- p.41Chapter 5.3.2 --- Calculation of blocking probability --- p.42Chapter 5.4 --- Illustrative Examples --- p.42Chapter 5.4.1 --- One-dimensional case --- p.42Chapter 5.4.2 --- Two-dimensional case --- p.45Chapter 5.5 --- Conclusions --- p.45Chapter 6 --- Phantom Cell Analysis --- p.49Chapter 6.1 --- Introduction --- p.49Chapter 6.2 --- Problem Formulation --- p.49Chapter 6.3 --- Arrival Rates in Phantom Cells --- p.50Chapter 6.4 --- Blocking Probability and Channel Occupancy Distribution --- p.51Chapter 6.4.1 --- Derivation of α --- p.51Chapter 6.4.2 --- Derivation of Bside --- p.52Chapter 6.4.3 --- Derivation of Bopp --- p.53Chapter 6.4.4 --- Channel occupancy distribution --- p.54Chapter 6.5 --- Numerical Results --- p.55Chapter 6.6 --- Conclusions --- p.55Chapter 7 --- Performance Analysis of BDCL Strategy --- p.58Chapter 7.1 --- Introduction --- p.58Chapter 7.2 --- Borrowing with Directional Carrier Locking --- p.58Chapter 7.3 --- Cell Group Decoupling Analysis --- p.59Chapter 7.3.1 --- Linear cellular systems --- p.59Chapter 7.3.2 --- Planar cellular systems --- p.61Chapter 7.4 --- Phantom Cell Analysis --- p.61Chapter 7.4.1 --- Call arrival rates in phantom cells --- p.62Chapter 7.4.2 --- Analytical model --- p.62Chapter 7.5 --- Numerical Examples --- p.63Chapter 7.5.1 --- Linear cellular system with CGD analysis --- p.63Chapter 7.5.2 --- Planar cellular system with CGD analysis --- p.65Chapter 7.5.3 --- Planar cellular system with phantom cell analysis --- p.65Chapter 7.6 --- Conclusions --- p.68Chapter 8 --- Performance Analysis of Directed Retry --- p.69Chapter 8.1 --- Introduction --- p.69Chapter 8.2 --- Directed Retry Strategy --- p.69Chapter 8.3 --- Blocking Performance of Directed Retry --- p.70Chapter 8.3.1 --- Analytical model --- p.70Chapter 8.3.2 --- Numerical examples --- p.71Chapter 8.4 --- HandofF Analysis for Directed Retry --- p.73Chapter 8.4.1 --- Analytical model --- p.73Chapter 8.4.2 --- Numerical examples --- p.75Chapter 8.5 --- Conclusions --- p.77Chapter 9 --- Handoff Analysis in a Linear System --- p.79Chapter 9.1 --- Introduction --- p.79Chapter 9.2 --- Traffic Model --- p.80Chapter 9.2.1 --- Call arrival rates --- p.80Chapter 9.2.2 --- Channel holding time distribution --- p.81Chapter 9.3 --- Analytical Model --- p.81Chapter 9.3.1 --- Handoff probability --- p.81Chapter 9.3.2 --- Handoff call arrival rate --- p.81Chapter 9.3.3 --- Derivation of blocking probability --- p.81Chapter 9.3.4 --- Handoff failure probability --- p.82Chapter 9.3.5 --- Finding the optimal number of guard channels --- p.83Chapter 9.4 --- Numerical Results --- p.83Chapter 9.4.1 --- System parameters --- p.83Chapter 9.4.2 --- Justifying the analysis --- p.84Chapter 9.4.3 --- The effect of the number of guard channels --- p.84Chapter 9.5 --- Conclusions --- p.85Chapter 10 --- Mobile Location Tracking Strategy --- p.88Chapter 10.1 --- Introduction --- p.88Chapter 10.2 --- Review of Location Tracking Strategies --- p.89Chapter 10.2.1 --- Fixed location area strategy --- p.89Chapter 10.2.2 --- Fixed reporting center strategy --- p.89Chapter 10.2.3 --- Intelligent paging strategy --- p.89Chapter 10.2.4 --- Time-based location area strategy --- p.89Chapter 10.2.5 --- Movement-based location area strategy --- p.90Chapter 10.2.6 --- Distance-based location area strategy --- p.90Chapter 10.3 --- Optimization of Location Area Size --- p.90Chapter 10.3.1 --- Location updating rates ´ؤ linear systems --- p.90Chapter 10.3.2 --- Location updating rates ´ؤ planar systems --- p.91Chapter 10.3.3 --- Optimal location area size ´ؤ linear systems --- p.92Chapter 10.3.4 --- Optimal location area size ´ؤ planar systems --- p.92Chapter 10.4 --- Comparison of FLA & DBLA Strategies --- p.93Chapter 10.5 --- Adaptive Location Tracking Strategy --- p.94Chapter 10.5.1 --- Mobility tracking --- p.94Chapter 10.5.2 --- Protocols for ALT strategy --- p.94Chapter 10.6 --- Numerical Examples --- p.95Chapter 10.7 --- Conclusions --- p.97Chapter 11 --- A New Quality of Service Measure --- p.99Chapter 11.1 --- Introduction --- p.99Chapter 11.2 --- QOS Measures --- p.99Chapter 11.3 --- An Example --- p.101Chapter 11.4 --- Case Studies --- p.101Chapter 11.5 --- Conclusions --- p.106Chapter 12 --- Discussions & Conclusions --- p.107Chapter 12.1 --- Summary of Results --- p.107Chapter 12.2 --- Topics for Future Research --- p.108Chapter A --- Borrowing with Directional Channel Locking Strategy --- p.110Chapter B --- Derivation of p2 --- p.112Chapter C --- Publications Derived From This Thesis --- p.114Bibliography --- p.11
    • …
    corecore