1,967 research outputs found

    Call blocking probabilities for Poisson traffic under the Multiple Fractional Channel Reservation policy

    Get PDF
    In this paper, we study the performance of the Multiple Fractional Channel Reservation (MFCR) policy, which is a bandwidth reservation policy that allows the reservation of real (not integer) number of channels in order to favor calls of high channel (bandwidth) requirements. We consider a link of fixed capacity that accommodates Poisson arriving calls of different service-classes with different bandwidth-per-call requirements. Calls compete for the available bandwidth under the MFCR policy. To determine call blocking probabilities, we propose approximate but recursive formulas based on the notion of reserve transition rates. The accuracy of the proposed method is verified through simulation

    A Decision-Theoretic Approach to Resource Allocation in Wireless Multimedia Networks

    Full text link
    The allocation of scarce spectral resources to support as many user applications as possible while maintaining reasonable quality of service is a fundamental problem in wireless communication. We argue that the problem is best formulated in terms of decision theory. We propose a scheme that takes decision-theoretic concerns (like preferences) into account and discuss the difficulties and subtleties involved in applying standard techniques from the theory of Markov Decision Processes (MDPs) in constructing an algorithm that is decision-theoretically optimal. As an example of the proposed framework, we construct such an algorithm under some simplifying assumptions. Additionally, we present analysis and simulation results that show that our algorithm meets its design goals. Finally, we investigate how far from optimal one well-known heuristic is. The main contribution of our results is in providing insight and guidance for the design of near-optimal admission-control policies.Comment: To appear, Dial M for Mobility, 200
    • 

    corecore