2,821 research outputs found

    Resource Allocation and Mobility Prediction Algorithms for Multimedia Wireless Cellular Networks

    Get PDF
    Among the issues the telecommunication industry is the demand for multimedia applications with Quality of Service (QoS) in wireless/mobile networks. In the face of this increasingly complex traffic mix, where each service imposes different requirements, QoS provisioning and guarantee for multimedia services have become increasingly important. This is partially due to the users' requirements and poses a difficult challenge for network service providers. The tasks are more challenging than those in the wired networks due to the shortage of resources and the mobility present in wireless networks. The mobility factor causes severe fluctuations of resource usage. In this research, the QoS provisioning and resource utilization for multimedia services in wireless/mobile networks aspects are addressed. The first proposed scheme is called Adaptive Multi-Class Services Controller scheme (AMCSC). This scheme harnesses the combinations of Call Admission Control (CAC), an Adaptive Bandwidth Allocation (ABA) algorithm with micro-Acceptable Bandwidth Level (micro-ABL) and the Connection Management Table (CMT). The specific objective in designing the AMCSC Scheme is to reduce the New Connection Blocking Probability (NCBP) and the Handoff Connection Dropping Probability (HCDP) by managing resource allocation to address. The insufficient resource problem is experienced by the MTs. This scheme supports multiple classes of non-adaptive and adaptive multimedia services with diverse QoS requirements. The second proposed scheme is a bandwidth reservation scheme based on Mobility Prediction Scheme (MPS). Two proposed MPSs are deployed to predict the mobility movement of mobiles. The first MPS obtains the user mobility information by Received Signal Strength (RSS) which also includes the direction of the MT. This is enhanced based also on the position of the MT within a sector and zones of the cell. The second MPS obtains the user mobility information using the road map information of the cell and the integrated RSS and Global Position System (GPS) measurements. The simulation results show that the proposed scheme enhances the estimation of the target cell. This shown by the reduction of the signalling traffic in wireless cellular networks, reduction of the number of terminated ongoing calls of non-real time traffic and reduction of the number of cancelled reservation due to false reservation. The third proposed framework is an integration of the AMCSC scheme and the bandwidth reservation done based on the MPS. This integration is used to achieve the ideal balance between the users' QoS guarantee of multiple classes of wireless multimedia and maximizing the bandwidth utilization. The performance result of the proposed framework has proven to improve the achieved performance metrics. The performances analysis in this research is discrete simulation. The proposed schemes have proven to enhance the performance in terms of NCBP and HCDP for each type of traffic, management the resource for multiple traffics with diverse requirement, bandwidth utilization and predicting the target cell in the right time and place

    An Erlang multirate loss model supporting elastic traffic under the threshold policy

    Get PDF
    In this paper, we propose a multirate teletraffic loss model of a single link with certain bandwidth capacity that accommodates Poisson arriving calls, which can tolerate bandwidth compression (elastic traffic), under the threshold policy. When compression occurs, the service time of new and in-service calls increases. The threshold policy provides different QoS among service-classes by limiting the number of calls of a service-class up to a pre-defined threshold, which can be different for each service-class. Due to the bandwidth compression mechanism, the steady state probabilities in the proposed model do not have a product form solution. However, we approximate the model by a reversible Markov chain, and prove recursive formulas for the calculation of call blocking probabilities and link utilization. The accuracy of the proposed formulas is verified through simulation and found to be very satisfactory

    A Fair and Efficient Packet Scheduling Scheme for IEEE 802.16 Broadband Wireless Access Systems

    Full text link
    This paper proposes a fair and efficient QoS scheduling scheme for IEEE 802.16 BWA systems that satisfies both throughput and delay guarantee to various real and non-real time applications. The proposed QoS scheduling scheme is compared with an existing QoS scheduling scheme proposed in literature in recent past. Simulation results show that the proposed scheduling scheme can provide a tight QoS guarantee in terms of delay, delay violation rate and throughput for all types of traffic as defined in the WiMAX standard, thereby maintaining the fairness and helps to eliminate starvation of lower priority class services. Bandwidth utilization of the system and fairness index of the resources are also encountered to validate the QoS provided by our proposed scheduling scheme

    Call blocking probabilities for Poisson traffic under the Multiple Fractional Channel Reservation policy

    Get PDF
    In this paper, we study the performance of the Multiple Fractional Channel Reservation (MFCR) policy, which is a bandwidth reservation policy that allows the reservation of real (not integer) number of channels in order to favor calls of high channel (bandwidth) requirements. We consider a link of fixed capacity that accommodates Poisson arriving calls of different service-classes with different bandwidth-per-call requirements. Calls compete for the available bandwidth under the MFCR policy. To determine call blocking probabilities, we propose approximate but recursive formulas based on the notion of reserve transition rates. The accuracy of the proposed method is verified through simulation

    Admission Control for Multiuser Communication Systems

    Get PDF
    During the last few years, broadband wireless communication has experienced very rapid growth in telecommunications industry. Hence, the performance analysis of such systems is one of the most important topics. However, accurate systems’ analysis requires first good modeling of the network traffic. Moreover, broadband wireless communication should achieve certain performance in order to satisfy the customers as well as the operators. Therefore, some call admission control techniques should be integrated with wireless networks in order to deny new users/services if accepting them will lead to degrade the network performance to less than the allowed threshold. This thesis mainly discusses the above two issues which can be summarized as follows. First issue is the traffic modeling of wireless communication. The performance analysis is discussed in terms of the quality of services (QoS) and also the grade of services (GoS). Different scenarios have been studies such as enhancing the GoS of handover users. The second issue is the admission control algorithms. Admission Control is part of radio resource management. The performance of admission control is affected by channel characteristics such as fading and interference. Hence, some wireless channel characteristics are introduced briefly. Seven different channel allocation schemes have been discussed and analyzed. Moreover, different admission control algorithms are analyzed such as power-based and multi-classes fuzzy-logic based. Some simulations analyses are given as well to show the system performance of different algorithms and scenarios.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service
    • 

    corecore