7,950 research outputs found

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable pĂșblic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Mobility: a double-edged sword for HSPA networks

    Get PDF
    This paper presents an empirical study on the performance of mobile High Speed Packet Access (HSPA, a 3.5G cellular standard) networks in Hong Kong via extensive field tests. Our study, from the viewpoint of end users, covers virtually all possible mobile scenarios in urban areas, including subways, trains, off-shore ferries and city buses. We have confirmed that mobility has largely negative impacts on the performance of HSPA networks, as fast-changing wireless environment causes serious service deterioration or even interruption. Meanwhile our field experiment results have shown unexpected new findings and thereby exposed new features of the mobile HSPA networks, which contradict commonly held views. We surprisingly find out that mobility can improve fairness of bandwidth sharing among users and traffic flows. Also the triggering and final results of handoffs in mobile HSPA networks are unpredictable and often inappropriate, thus calling for fast reacting fallover mechanisms. We have conducted in-depth research to furnish detailed analysis and explanations to what we have observed. We conclude that mobility is a double-edged sword for HSPA networks. To the best of our knowledge, this is the first public report on a large scale empirical study on the performance of commercial mobile HSPA networks

    Mobility-based predictive call admission control and resource reservation for next-generation mobile communications networks.

    Get PDF
    Recently, the need for wireless and mobile communications has grown tremendously and it is expected that the number of users to be supported will increase with high rates in the next few years. Not only the number of users, but also the required bandwidth to support each user is supposed to increase especially with the deploying of the multimedia and the real time applications. This makes the researchers in the filed of mobile and wireless communications more interested in finding efficient solutions to solve the limitations of the available natural radio resources. One of the important things to be considered in the wireless mobile environment is that the user can move from one location to another when there is an ingoing call. Resource reservation ( RR ) schemes are used to reserve the bandwidth ( BW ) required for the handoff calls. This will enable the user to continue his/her call while he/she is moving. Also, call admission control ( CAC ) schemes are used as a provisioning strategy to limit the number of call connections into the network in order to reduce the network congestion and the call dropping. The problem of CAC and RR is one of the most challenging problems in the wireless mobile networks. Also, in the fourth generation ( 4G ) of mobile communication networks, many types of different mobile systems such as wireless local area networks ( WLAN s) and cellular networks will be integrated. The 4G mobile networks will support a broad range of multimedia services with high quality of service.New Call demission control and resource reservation techniques are needed to support the new 4G systems. Our research aims to solve the problems of Call Admission Control (CAC), and resource reservation (RR) in next-generation cellular networks and in the fourth generation (4G) wireless heterogeneous networks. In this dissertation, the problem of CAC and RR in wireless mobile networks is addressed in detail for two different architectures of mobile networks: (1) cellular networks, and (2) wireless heterogeneous networks (WHNs) which integrate cellular networks and wireless local area networks (WLANs). We have designed, implemented, and evaluated new mobility-based predictive call admission control and resource reservation techniques for the next-generation cellular networks and for the 4G wireless heterogeneous networks. These techniques are based on generating the mobility models of the mobile users using one-dimensional and multidimensional sequence mining techniques that have been designed for the wireless mobile environment. The main goal of our techniques is to reduce the call dropping probability and the call blocking probability, and to maximize the bandwidth utilization n the mobile networks. By analyzing the previous movements of the mobile users, we generate local and global mobility profiles for the mobile users, which are utilized effectively in prediction of the future path of the mobile user. Extensive simulation was used to analyze and study the performance of these techniques and to compare its performance with other techniques. Simulation results show that the proposed techniques have a significantly enhanced performance which is comparable to the benchmark techniques

    QoS Provisioning for Multi-Class Traffic in Wireless Networks

    Get PDF
    Physical constraints, bandwidth constraints and host mobility all contribute to the difficulty of providing Quality of Service (QoS) guarantees in wireless networks. There is a growing demand for wireless networks to support all the services that are available on wired networks. These diverse services, such as email, instant messaging, web browsing, video conferencing, telephony and paging all place different demands on the network, making QoS provisioning for wireless networks that carry multiple classes of traffic a complex problem. We have developed a set of admission control and resource reservation schemes for QoS provisioning in multi-class wireless networks. We present three variations of a novel resource borrowing scheme for cellular networks that exploits the ability of some multimedia applications to adapt to transient fluctuations in the supplied resources. The first of the schemes is shown to be proportionally fair: the second scheme is max-min fair. The third scheme for cellular networks uses knowledge about the relationship between streams that together comprise a multimedia session in order to further improve performance. We also present a predictive resource reservation scheme for LEO satellite networks that exploits the regularity of the movement patterns of mobile hosts in LEO satellite networks. We have developed the cellular network simulator (CNS) for evaluating call-level QoS provisioning schemes. QoS at the call-level is concerned with call blocking probability (CBP), call dropping probability (CDP), and supplied bandwidth. We introduce two novel QoS parameters that relate to supplied bandwidth—the average percent of desired bandwidth supplied (DBS), and the percent of time spent operating at the desired bandwidth level (DBT)

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated
    • 

    corecore