45 research outputs found

    The Aquarius Salinity Retrieval Algorithm

    Get PDF
    The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration [2] converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to molecular oxygen, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind, which is addressed in more detail in section 3. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water [3], [4] and an auxiliary field for the sea surface temperature. In the current processing only v-pol TB are used for this last step

    Calibration of a polarimetric microwave radiometer using a double directional coupler

    Get PDF
    This paper presents a built-in calibration procedure of a 10-to-20 GHz polarimeter aimed at measuring the I, Q, U Stokes parameters of cosmic microwave background (CMB) radiation. A full-band square waveguide double directional coupler, mounted in the antenna-feed system, is used to inject differently polarized reference waves. A brief description of the polarimetric microwave radiometer and the system calibration injector is also reported. A fully polarimetric calibration is also possible using the designed double directional coupler, although the presented calibration method in this paper is proposed to obtain three of the four Stokes parameters with the introduced microwave receiver, since V parameter is expected to be zero for the CMB radiation. Experimental results are presented for linearly polarized input waves in order to validate the built-in calibration system.The authors would like to thank The Spanish Ministry of Science and Innovation for financial support provided through the grants ESP2015-70646-C2-2-R, ESP2017-83921-C2-2-R and PID2019-110610RB-C2

    The QUIET Instrument

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales (~ 1 degree). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 uK sqrt(s)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 uK sqrt(s) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range l= 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument

    Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    Get PDF
    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model

    The Q/U Imaging ExperimenT Instrument

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the cosmic microwave background, targeting the imprint of inflationary gravitational waves at large angular scales(~1°). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters that form the focal planes use a compact design based on high electron mobility transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 μKs^(1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 μKs^(1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range ℓ ~ 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance, and sources of systematic error of the instrument

    Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    Get PDF
    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems

    GigaHertz Symposium 2010

    Get PDF

    Polarimetric Microwave Radiometer Calibration.

    Full text link
    A polarimetric radiometer is a radiometer with the capability to measure the correlation information between vertically and horizontally polarized electric fields. To better understand and calibrate this type of radiometer, several research efforts have been undertaken. 1) All microwave radiometer measurements of brightness temperature (TB) include an additive noise component. The variance and correlation statistics of the additive noise component of fully polarimetric radiometer measurements are derived from theoretical considerations and the resulting relationships are verified experimentally. It is found that the noise can be correlated among polarimetric channels and that the correlation statistics can vary as a function of the polarization state of the scene under observation. 2) A polarimetric radiometer calibration algorithm has been developed which makes use of the Correlated Noise Calibration Standard (CNCS) to aid in the characterization of microwave polarimetric radiometers and to characterize the non-ideal characteristics of the CNCS itself simultaneously. CNCS has been developed by the Space Physics Research Laboratory of the University of Michigan (SPRL). The calibration algorithm has been verified using the DetMit L-band radiometer. The precision of the calibration is estimated by Monte Carlo simulations. A CNCS forward model has been developed to describe the non-ideal characteristics of the CNCS. Impedance-mismatches between the CNCS and radiometer under test are also considered in the calibration. 3) The calibration technique is demonstrated by applying it to the Engineering Model (EM) of the NASA Aquarius radiometer. CNCS is used to calibrate the Aquarius radiometer – specifically to retrieve its channel phase imbalance and the thermal emission characteristics of transmission line between its antenna and receiver. The impact of errors in calibration of the radiometer channel phase imbalance on Sea Surface Salinity (SSS) retrievals by Aquarius is also analyzed. 4) The CNCS has also been used to calibrate the Breadboard Model (BM) of the L-band NASA Juno radiometer. In order to cover the broad TB dynamic range of the Juno radiometer, a special linearization process has been developed for the CNCS. The method combines multiple Arbitrary Waveform Generator gaussian noise signals with different values of variance to construct the necessary range of TB levelsPh.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61741/1/jzhpeng_1.pd

    Devices for satellite-assisted quantum networks

    Get PDF
    Quantum networks, quantum nodes interconnected by quantum channels, offer powerful means of secure communications and quantum computations. They are crucial elements in a broad area of quantum technologies including quantum simulations and metrologies. In particular, quantum links with satellites take the network into a global or greater scale, extending the capability of transmitting information. It also provides experimental platforms of testing quantum physics in a relativistic regime. The realization of satellite-assisted quantum networks requires devices that are interfaced with quantum optical channels to satellites. This thesis discusses the development of four essential devices, three of which are in line with Canada's Quantum Encryption and Science Satellite (QEYSSat) mission. First, polarization-entangled photon sources are developed to transmit one of the paired photons over ground-based fiber-optic networks and the other over ground-to-satellite free-space links. A practical and versatile interferometric scheme is designed and demonstrated, which allows constructing highly non-degenerate sources with only conventional polarization optics. A method of directly producing entangled photon-pairs from optical fibers without interferometers is studied with thorough numerical analysis to show feasibility of experimental demonstration. An entangled photon source for the QEYSSat mission is conceptually designed, and several key parameters to fulfill a set of performance requirements are theoretically studied and experimentally verified. Secondly, this thesis presents two characterization platforms for optical components that are designed and implemented for the QEYSSat mission. One is to precisely measure transmitted wavefronts of large optics including telescopes. A proof-of-principle experiment is conducted with accurate modelling of measurement apparatus via three-dimensional raytracing, and quantitative agreement between the experiment and simulations validates our methodology. The other provides polarization characterizations for a variety of optical components including lenses, mirrors, and telescopes with consistent precision. A detailed description of subsystems including calibrations and test procedures is provided. Polarization-test results of several components for the QEYSSat are discussed. Third, quantum frequency transducers are developed for single-photon quantum key distributions with QEYSSat links. The devices are designed to translate the wavelength of single-photons emitted from quantum dot single-photon sources to QEYSSat channel wavelength via four-wave mixing Bragg-scattering process. Two optical media are concerned: a silicon nitride ring resonator and a photonic crystal fiber. Thorough numerical simulations are performed to estimate the device performance for both cases. A proof-of-principle demonstration of the frequency translation is conducted with a commercial photonic crystal fiber. Finally, a quantum simulator, serving as a quantum node in satellite-assisted quantum networks, is designed in a silicon nitride nanophotonic platform with cesium atoms. The designed photonic structure tailors electromagnetic vacuum such that photon-mediated forces between atoms causes collective motions mediating site-selective SU(2) spin-spin interactions. A coherent spin-exchange rate between atoms and collective dissipation rate of atoms are precisely estimated via finite-element time domain simulations. Furthermore, two schemes of trapping atoms in the vicinity of the designed structure are studied with calculations of potential energies and phonon tunneling rates. Experimental progress toward realization of the proposed system is summarized. The presented research activities of designing, analyzing, and implementing devices demonstrates the readiness of satellite-assisted quantum networks. This work contributes to creating quantum channels by entanglements with interfaces of various quantum systems in line with a broader scope of establishing a global quantum internet and quantum space exploration

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore