5,915 research outputs found

    17-11 Evaluation of Transit Priority Treatments in Tennessee

    Get PDF
    Many big cities are progressively implementing transit friendly corridors especially in urban areas where traffic may be increasing at an alarming rate. Over the years, Transit Signal Priority (TSP) has proven to be very effective in creating transit friendly corridors with its ability to improve transit vehicle travel time, serviceability and reliability. TSP as part of Transit Oriented Development (TOD) is associated with great benefits to community liveability including less environmental impacts, reduced traffic congestions, fewer vehicular accidents and shorter travel times among others.This research have therefore analysed the impact of TSP on bus travel times, late bus recovery at bus stop level, delay (on mainline and side street) and Level of Service (LOS) at intersection level on selected corridors and intersections in Nashville Tennessee; to solve the problem of transit vehicle delay as a result of high traffic congestion in Nashville metropolitan areas. This study also developed a flow-delay model to predict delay per vehicle for a lane group under interrupted flow conditions and compared some measure of effectiveness (MOE) before and after TSP. Unconditional green extension and red truncation active priority strategies were developed via Vehicle Actuated Programming (VAP) language which was tied to VISSIM signal controller to execute priority for transit vehicles approaching the traffic signal at 75m away from the stop line. The findings from this study indicated that TSP will recover bus lateness at bus stops 25.21% to 43.1% on the average, improve bus travel time by 5.1% to 10%, increase side street delay by 15.9%, and favour other vehicles using the priority approach by 5.8% and 11.6% in travel time and delay reduction respectively. Findings also indicated that TSP may not affect LOS under low to medium traffic condition but LOS may increase under high traffic condition

    An empirical test for cellular automaton models of traffic flow

    Full text link
    Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do not reproduce even qualitatively the most important empirical observations, 2) models that are on a macroscopic level in reasonable agreement with the empirics, and 3) models that reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications, but also shed new light on the relevant interactions in traffic flow.Comment: 28 pages, 36 figures, accepted for publication in PR

    Calibration of the Gipps Car-following Model Using Trajectory Data

    Get PDF
    One of the most important tasks in the microscopic simulation of traffic flow, assigned to the car following sub-model, is the modelling of the longitudinal movement of vehicles. The calibration of a car-following model is usually done at an aggregated level, using macroscopic traffic stream variables (speed, flow, density). There is an interest in calibration procedures based on disaggregated data. However, obtaining accurate trajectory data is a real challenge. This paper presents a low-cost procedure to calibrate the Gipps car-following model. The trajectory data is collected with a car equipped with a datalogger and a LIDAR rangefinder. The datalogger combines GPS and accelerometers data to provide accurate speed and acceleration measurements. The LIDAR measures the distances to the leading or following vehicle. Two alternative estimation methods were tested: the first follows individual procedures that explicitly account for the physical meaning of each parameter; the second formulates the calibration as an optimization problem: the objective function is defined so as to minimize the differences between the simulated and real inter-vehicle distances; the problem is solved using an automated procedure based on a genetic algorithm. The results show that the optimization approach leads to a very accurate representation of the specific modeled situation but offers poor transferability; on the other hand, the individual estimation provides a satisfactory fit in a wide range of traffic conditions and hence is the recommended method for forecasting purposes
    corecore