1,241 research outputs found

    Calibration of scanning laser range cameras with applications for machine vision

    Get PDF
    Range images differ from conventional reflectance images because they give direct 3-D information about a scene. The last five years have seen a substantial increase in the use of range imaging technology in the areas of robotics, hazardous materials handling, and manufacturing. This has been fostered by a cost reduction of reliable range scanning products, resulting primarily from advanced development of computing resources. In addition, the improved performance of modern range cameras has spurred an interest in new calibrations which take account of their unconventional design. Calibration implies both modeling and a numerical technique for finding parameters within the model. Researchers often refer to spherical coordinates when modeling range cameras. Spherical coordinates, however, only approximate the behavior of the cameras. We seek, therefore, a more analytical approach based on analysis of the internal scanning mechanisms of the cameras. This research demonstrates that the Householder matrix [14] is a better tool for modeling these devices. We develop a general calibration technique which is both accurate and simple to implement. The method proposed here compares target points taken from range images to the known geometry of the target. The calibration is considered complete if the two point sets can be made to match closely in a least squares sense by iteratively modifying model parameters. The literature, fortunately, is replete with numerical algorithms suited to this task. We have selected the simplex algorithm because it is particularly well suited for solving systems with many unknown parameters. In the course of this research, we implement the proposed calibration. We will find that the error in the range image data can be reduced from more that 60 mm per point rms to less than 10 mm per point. We consider this result to be a success because analysis of the results shows the residual error of 10 mm is due solely to random noise in the range values, not from calibration. This implies that accuracy is limited only by the quality of the range measuring device inside the camera

    An intelligent multi-floor mobile robot transportation system in life science laboratories

    Get PDF
    In this dissertation, a new intelligent multi-floor transportation system based on mobile robot is presented to connect the distributed laboratories in multi-floor environment. In the system, new indoor mapping and localization are presented, hybrid path planning is proposed, and an automated doors management system is presented. In addition, a hybrid strategy with innovative floor estimation to handle the elevator operations is implemented. Finally the presented system controls the working processes of the related sub-system. The experiments prove the efficiency of the presented system

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Interfaz de software Autonavi3at para navegar de forma autónoma en vías urbanas mediante visión omnidireccional y un robot móvil

    Get PDF
    The design of efficient autonomous navigation systems for mobile robots or autonomous vehicles is fundamental to perform the programmed tasks. Basically, two kind of sensors are used in urban road following: LIDAR and cameras. LIDAR sensors are highly accurate but expensive and extra work is needed for human understanding of the point cloud scenes; however, visual content is understood better by human beings, which should be used to develop human-robot interfaces. In this work, a computer vision-based urban road following software tool called AutoNavi3AT for mobile robots and autonomous vehicles is presented. The urban road following scheme proposed in AutoNavi3AT uses vanishing point estimation and tracking on panoramic images to control the mobile robot heading on the urban road. To do that, Gabor filters, region growing, and particle filters were used. In addition, laser range data are also employed for local obstacle avoidance. Quantitative results were achieved using two kind of tests, one uses datasets acquired at the Universidad del Valle campus, and field tests using a Pioneer 3AT mobile robot. As a result, important improvements in the vanishing point estimation of 68.26 % and 61.46 % in average were achieved, which is useful for mobile robots and autonomous vehicles when they are moving on urban roads.El diseño de sistemas de navegación autónomos eficientes para robots móviles o vehículos autónomos es fundamental para realizar las tareas programadas. Básicamente, se utilizan dos tipos de sensores en el seguimiento de vías urbanas: LIDAR y cámaras. Los sensores LIDAR son muy precisos, pero costosos y se necesita trabajo adicional para la comprensión humana de las escenas de nubes de puntos; sin embargo, los seres humanos entienden mejor el contenido visual, lo que debería usarse para desarrollar interfaces humano-robot. En este trabajo, se presenta una herramienta de software de seguimiento de carreteras urbanas basada en visión artificial llamada AutoNavi3AT para robots móviles y vehículos autónomos. El esquema de seguimiento de vías urbanas propuesto en AutoNavi3AT utiliza la estimación del punto de fuga y el seguimiento de imágenes panorámicas para controlar el avance del robot móvil en la vía urbana. Para ello se utilizaron filtros Gabor, crecimiento de regiones y filtros de partículas. Además, los datos de alcance del láser también se emplean para evitar obstáculos locales. Los resultados cuantitativos se lograron utilizando dos tipos de pruebas, una utiliza conjuntos de datos adquiridos en el campus de la Universidad del Valle y pruebas de campo utilizando un robot móvil Pioneer 3AT. Como resultado, se lograron mejoras importantes en la estimación del punto de fuga de 68.26% y 61.46% en promedio, lo cual es útil para robots móviles y vehículos autónomos cuando se desplazan por vías urbanas

    Comparative Study of Indoor Navigation Systems for Autonomous Flight

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) have attracted the society and researchers due to the capability to perform in economic, scientific and emergency scenarios, and are being employed in large number of applications especially during the hostile environments. They can operate autonomously for both indoor and outdoor applications mainly including search and rescue, manufacturing, forest fire tracking, remote sensing etc. For both environments, precise localization plays a critical role in order to achieve high performance flight and interacting with the surrounding objects. However, for indoor areas with degraded or denied Global Navigation Satellite System (GNSS) situation, it becomes challenging to control UAV autonomously especially where obstacles are unidentified. A large number of techniques by using various technologies are proposed to get rid of these limits. This paper provides a comparison of such existing solutions and technologies available for this purpose with their strengths and limitations. Further, a summary of current research status with unresolved issues and opportunities is provided that would provide research directions to the researchers of the similar interests

    Self-Mixing Laser Distance-Sensor Enhanced by Multiple Modulation Waveforms

    Get PDF
    Optical rangefinders based on Self-Mixing Interferometry are widely described in literature, but not yet on the market as commercial instruments. The main reason is that it is relatively easy to propose new elaboration techniques and get results in controlled conditions, while it is very difficult to develop a reliable instrument. In this paper, we propose a laser distance sensor with improved reliability, realized through a wavelength modulation at a different frequency, able to decorrelate single measurement errors and obtain improvement by averages. A dedicated software is implemented to automatically calculate the modulation pre-emphasis, needed to linearize the wavelength modulation. Finally, data selection algorithms allow to overcome signal fading problems due to the speckle effect. A prototype demonstrates the approach with about 0.1 mm accuracy up to 2 m of distance at 200 measurements per second

    A Novel Approach To Intelligent Navigation Of A Mobile Robot In A Dynamic And Cluttered Indoor Environment

    Get PDF
    The need and rationale for improved solutions to indoor robot navigation is increasingly driven by the influx of domestic and industrial mobile robots into the market. This research has developed and implemented a novel navigation technique for a mobile robot operating in a cluttered and dynamic indoor environment. It divides the indoor navigation problem into three distinct but interrelated parts, namely, localization, mapping and path planning. The localization part has been addressed using dead-reckoning (odometry). A least squares numerical approach has been used to calibrate the odometer parameters to minimize the effect of systematic errors on the performance, and an intermittent resetting technique, which employs RFID tags placed at known locations in the indoor environment in conjunction with door-markers, has been developed and implemented to mitigate the errors remaining after the calibration. A mapping technique that employs a laser measurement sensor as the main exteroceptive sensor has been developed and implemented for building a binary occupancy grid map of the environment. A-r-Star pathfinder, a new path planning algorithm that is capable of high performance both in cluttered and sparse environments, has been developed and implemented. Its properties, challenges, and solutions to those challenges have also been highlighted in this research. An incremental version of the A-r-Star has been developed to handle dynamic environments. Simulation experiments highlighting properties and performance of the individual components have been developed and executed using MATLAB. A prototype world has been built using the WebotsTM robotic prototyping and 3-D simulation software. An integrated version of the system comprising the localization, mapping and path planning techniques has been executed in this prototype workspace to produce validation results

    The Ant and the Trap: Evolution of Ant-Inspired Obstacle Avoidance in a Multi-Agent Robotic System

    Get PDF
    Interest in swarm robotics, particularly those modeled on biological systems, has been increasing with each passing year. We created the iAnt robot as a platform to test how well an ant-inspired robotic swarm could collect resources in an unmapped environment. Although swarm robotics is still a loosely defined field, one of the included hallmarks is multiple robots cooperating to complete a given task. The use of multiple robots means increased cost for research, scaling often linearly with the number of robots. We set out to create a system with the previously described capabilities while lowering the entry cost by building simple, cheap robots able to operate outside of a dedicated lab environment. Obstacle avoidance has long been a necessary component of robot systems. Avoiding collisions is also a difficult problem and has been studied for many years. As part of moving the iAnt further towards the real-world we needed a method of obstacle avoidance. Our hypothesis is that use of biological methods including evolution, stochastic movements and stygmergic trails into the iAnt Central Place Foraging Algorithm (CPFA) could result in robot behaviors suited to navigating obstacle-filled environments. The result is a modification of the CPFA to include pheromone trails, CPFA-Trails or CPFAT. This thesis first demonstrates the low-cost, simple and robust design of the physical iAnt robot. Secondly we will demonstrate the adaptability of the the system to evolve and succeed in an obstacle-laden environment
    corecore