11 research outputs found

    Flow Measurement of Wet CO2 Using an Averaging Pitot Tube and Coriolis Mass Flowmeters

    Get PDF
    The flow measurement of wet-gas is an active field with extensive research background that remains a modern-day challenge. The implication of wet-gas flow conditions is no different in Carbon Capture and Storage (CCS) pipelines. The associated complex flow regime with wet-gas flow makes it difficult to accurately meter the flow rate of the gas phase. Some conventional single-phase flowmeters like the Coriolis, Orifice plate, Ultrasonic, V-Cone, Venturi and Vortex have been tested for this application, usually accompanied with special recommendations. Often, a correlation equation valid within a certain range of specific conditions is required to correct the response of the flowmeter. This paper presents investigations into the suitability and performance of one of the most advanced averaging pitot tubes for the flow measurement of wet CO2 gas. The averaging pitot tube with flow conditioning wing geometry (APT-FCW) was studied and experimentally assessed in earlier work for the flow measurement of pure and dry CO2 within an error of ±1%. Under wet-gas conditions, however, the APT-FCW sensor is found to give an error of up to ±25% and within ±1.5% after appropriate correcting solutions are applied for a liquid fraction of up to 20%

    Flow Measurement of CO2 in a Binary Gaseous Mixture Using an Averaging Pitot Tube and Coriolis Mass Flowmeters

    Get PDF
    To combat the growing emissions of CO2 from industrial processes, Carbon Capture and Storage (CCS) and Carbon Capture and Utilization technologies (CCU) have been accepted worldwide to address these pressing concerns. So as to efficiently manage material and financial losses across the entire stream, accurate accounting and monitoring through fiscal metering of CO2 in CCS transportation pipelines are core and required features for the CCS technologies. Moreover, these technical requirements are part of the legal compliance schemes and guidelines from various regulatory bodies. The CO2 transportation pipelines will likely have multiple inputs from different capture plants, each with varying composition of CO2 and thus introducing impurities into the CO2 stream. The presence of other ordinary or hydrocarbon gases in the CO2 gas stream could affect the functionality of metering instruments by introducing additional errors, particularly in the case of volumetric flowmeters. In this study, volumetric and direct mass measurement methods for the flow measurement of CO2 mixtures using two totally different metering principles are experimentally evaluated. An Averaging Pitot Tube with Flow Conditioning Wing (APT-FCW) and Coriolis mass flowmeters (CMF) are used to assess the flow metering of CO2 in a binary gaseous mixture. Different gases (nitrogen, air, oxygen, argon and propane) are diluted as contaminants into the pure CO2 gas flow for various mass fractions to produce an adulterated mixture of the CO2 gas. Comparative analysis of the measurement results under these flow conditions relative to that of pure CO2 gas show that the measurement error of the APT-FCW sensor increases with the mass fraction of the diluent component, and gases with density closer to that of CO2 have a much lesser effect on the performance of the APT-FCW flow sensor for smaller mass fractions. The CMF proved to be very reliable in the gas combination processes and as a reference meter for the APT-FCW sensor. Further analytical observations are discussed in detail

    In Service Monitoring based on PEMS of NRE engines under 19kW

    Get PDF
    This report summarizes the results of a pilot program dedicated to develop a procedure for the In Service Monitoring of NRMM Small Compressed Ignition engines (categories NRE-v-1, NRE-v-2, NRE-c-1, NRE-c-2) based on Portable Emission Measurement System (PEMS). The tests took place between January 2018 and February 2019. The work addresses how to mount the measurement equipment on board of such machinery and the accuracy and precision of the exhaust gaseous pollutant emission measurements using PEMS. Compared to a standard test performed in an engine test cell (VELA_6 and at OEM facilities) the concentration measurements accuracy and precision was within 10%. In service tests showed that the results were stable and reproducible.JRC.C.4-Sustainable Transpor

    Evaluation of exhaust flowrate measurement techniques for a mobile emissions monitoring system

    Get PDF
    West Virginia University designed and developed Mobile Emissions Monitoring System (MEMS) for the six settling Heavy-Duty Diesel Engine (S-HDDE) manufacturers. The MEMS measures emissions concentrations while operating in a real world environment. The best method for measuring the emissions concentrations was found to be through raw exhaust sampling. In order to properly calculate the emissions concentrations the total exhaust flowrate through the engine must be determined. The devices evaluated were an Annubar, an Accutube, a hot film anemometer, a Pitot static tube, a venturi, and a vortex shedder.;The evaluation of the devices was broken down into two parts, the first part included cold bench testing and the second engine testing. The venturi was found to be the best flow device for a MEMS because of the increased flow range over the vortex shedder and was well suited for the environment of compression ignition exhaust streams

    Industrial flow measurement

    Get PDF
    This thesis discusses the intrinsic worth of a published work, ‘Industrial Flow Measurement’ (Appendix A), a handbook written and revised by the author over a period of 30 years. The author first discusses the need to measure flow and then moves on to the raison dâ€™Ăªtre of the handbook before looking at a brief history of flow measurement. Although not claiming that any single attribute of the handbook is unique, the author nonetheless postulates that because it incorporates several distinctive features, at a number of different levels, these agents combine to make it one-of-a- kind. The author moves on to an overview of existing flow metering technologies discussed within the handbook. Finally, he looks at what he considers is a major gap in the collected body of knowledge – the field of multiphase and water-cut metering and provides a justification, not only for its inclusion in the future but for future investigation

    Fluid flow measurement using electrical and optical fibre strain gauges.

    Get PDF
    The design, development and calibration of three flow sensors to measure the speed and direction of fluid flow is presented in this thesis. The force exerted by the fluid flow on the sensors are measured using strain gauges. Multidirectional fluid flow measurement has been made possible by vectorial addition of the orthogonal flow components. The fluid speed and direction are generated irrespective of each other. Electrical resistance strain gauges are used as the force measuring device for the first version of the flow meter. These strain gauges are bonded to the four longitudinal surfaces of a square-sectioned, elastic, rubber cantilever having a drag element attached to its free end. An attempt has been made to optimise the shape and dimensions of the elastic beam to obtain a constant drag co-efficient over a wide flow range. Calibration of the electrical strain gauge flow sensor has been performed in a wind tunnel to measure air flow. The sensor has a repeatability of 0.02%, linearity within 2% and a resolution of 0.43 m/s. The most noteworthy feature of the flow sensor is its quick response time of 50 milliseconds. The sensor is able to generate a measurement of flow direction in two dimensions with a resolution of 3.6". Preliminary measurements in a water tank enabled the speed of water to be measured with a resolution of 0.02 m/s over a range from 0 to 0.4 m/s. An optical fibre strain sensor has been designed and developed by inserting grooves into a multimode plastic optical fibre. As the fibre bends, the variation in the angle of the grooves causes an intensity modulation of the light transmitted through the fibre. A mathematical model has been developed which has been experimentally verified in the laboratory. The electrical strain gauge was replaced by the fibre optic strain gauge in the second version of the flow sensor. Two dimensional flow measurement was made possible by attaching two such optical fibre strain gauges on the adjacent sides of the square sectioned rubber beam. The optical fibre flow sensor was successfully calibrated in a wind tunnel to generate both the magnitude and direction of the velocity of air. The flow sensor had a repeatability of 0.3% and measured the wind velocity up to 30 M/s with a magnitude resolution of 1.3 m/s and a direction resolution of 5.9'. The third version of the flow sensor has used the grooved optical fibre strain sensor by itself without the rubber beam to measure the fluid flow. Wind tunnel calibration has been performed to measure two dimensional wind flow up to 35 m/s with a resolution of 0.96 m/s

    Calibration of an Averaging Pitot Tube for Gaseous CO2 Flowmetering

    No full text
    In this paper, an averaging pitot tube (APT) with flow conditioning wing (FCW) geometry is used as a practical sensing device to measure and characterize the flow of single-phase gaseous carbon dioxide (CO2). This technique demonstrates a simple, cost-effective, and potentially accurate option toward the measurement, accurate accounting, and characterization of CO2 in carbon capture and storage pipelines. The metrological performance of the flow sensor is verified using air medium before being applied for gaseous CO2. With a Coriolis mass flowmeter acting as a secondary calibration reference to further validate the performance of the APT-FCW flow sensor, both metering instruments were evaluated against a weighing scale apparatus. From the experimental and calibration data with air, the APT-FCWs average K-factor and linearity error are found to be 0.5091 and 0.725%, respectively. With operating conditions remaining unaltered in this particular flow measurement application and a target metering error within ±1%, the errors achieved for the Coriolis meter and the APT-FCW are better than ±0.6% and ±1.2%, respectively. Total uncertainty estimations under the stipulated environmental and working conditions are within ±1% and ±1.5% for the Coriolis meter and APT-FCW, respectively. The test results and other performance evaluation of the instruments are also discussed

    Free piston expander with a variable built-in volume ratio and with an integrated linear alternator

    Get PDF
    corecore