314 research outputs found

    2004 Research Engineering Annual Report

    Get PDF
    Selected research and technology activities at Dryden Flight Research Center are summarized. These activities exemplify the Center's varied and productive research efforts

    Vibration detection in turbomachinery using non-contacting sensors

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 103-105).Recent developments have seen the introduction of multiple Eddy Current Sensors (ECS) into turbomachinery. These sensors employ an active magnetic field to monitor each blade as it passes the sensor. They generate an electrical signal proportional to the distance of a blade from the sensor. Existing algorithms extract two pieces of information from the ECS signature, signal magnitude and signal zero crossing time. The signal magnitude is used to find tip clearance, and the zero crossing time is used to estimate vibrational parameters over the course of multiple revolutions. These techniques fail to exploit the majority of the information contained in the ECS signal. In this research, a novel residue characterization algorithm was developed that processes the full ECS pulse to produce a residue. The residue is a speed independent representation of differences between a baseline ECS pulse and an experimental ECS pulse. A mathematical model of the relationship between blade displacement and residue was developed. Empirical data collected with the MIT spin pit were used to verify convergence of the model with the residue characterization algorithm. This strongly suggests blade vibration can be deduced using the residue characterization method with a single ECS sensor.by Eric D. Cohen.M.Eng

    Magneto-optical trapping in a near-suface borehole

    Get PDF
    Borehole gravity sensing can be used in a number of applications to measure features around a well, including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors, based on atom interferometry, have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60 ± 0.1) mm at its widest point and a length of (890 ± 5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate how in-borehole gravity surveys are performed. During the survey, the system generated, on average, clouds of (3.0 ± 0.1) × 105 87Rb atoms with the standard deviation in atom number across the survey observed to be as low as 8.9 × 104

    First International Symposium on Strain Gauge Balances

    Get PDF
    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK

    Space Station Furnace Facility. Volume 2: Requirements Definition and Conceptual Design Study. Appendix 3: Environment Analysis

    Get PDF
    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns
    • …
    corecore