297 research outputs found

    Towards solid-state beam steering using a 7-emitter 1550 nm optical phased array

    Get PDF
    We present the preliminary design and experimental results of a 1550 nm solid-state beam pointing system based on an optical phased array (OPA) architecture. OPAs manipulate the distribution of optical power in the far-field by controlling the phase of individual emitters in an array. This allows OPAs to steer the beam in the far field without any mechanical components (e.g., steering mirrors). The beam-steering system presented here uses waveguide electro-optic modulators to actuate the phase of each element in a 7-emitter OPA, enabling kHz bandwidth steering with sub-milliradian pointing precision. The control system used to stabilize and control the phase of each emitter in the OPA exploits a technique called digitally enhanced heterodyne interferometry, allowing the phase of each emitter to be measured simultaneously at a single photodetector, dramatically simplifying the optical system. All digital signal processing is performed using a field-programmable gate-array. Applications of this technology include free-space link acquisition and tracking for satellite-to-satellite laser communications and light detection and ranging (LiDAR).This work was partially funded by the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav) (project ID CE170100004) and the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS) (project ID CE170100009)

    Digital Radar Implementation With System Response Compensation Through Amplitude Predistortion

    Get PDF
    Radars traditionally synthesize waveforms by using a variety of analog electronics. These analog components are collectively referred to as the analog chain. A typical electronic analog chain contains multiple components, such as frequency mixers, signal generators and local oscillators. The analog chains are typically used in radars for both the transmit and receive circuits. This design generally causes radars to be unnecessarily bulky and power intensive. However, with modern advancements in digital electronics, waveforms can more easily be synthesized and captured using only digital electronics. Digital electronics require significantly less power and occupy less space. The synthesis of radar waveforms using only digital electronics, such as Digital-to-Analog Converters (DACs) and Analog-to-Digital Converters (ADCs), allows for a majority of the analog chain to be removed from the system. A single digital component requires less power and provides more capability, thus providing a better alternative to the typical analog chain. In addition, digital signal processing techniques can still be used to increase the efficiency of the radar system. For instance, the received signal can be under sampled to reduce the amount of data collected by the radar. The effects of the system response cause the amplitude modulus of the waveform to be inconsistent, which effectively causes fluctuations in the power transmitted by the radar. Having a radar waveform with fluctuations in transmitted power is not ideal since the range of the radar is a function of the power transmitted. When implementing pulse compression signal processing, a waveform with a fluctuating modulus reduces the signal-to-noise ratio returned from the matched filter. In applications like Synthetic Aperture Radar (SAR), having a high signal-to-noise ratio is crucial to creating an accurate image. In order to create a constant amplitude waveform, the amplitude distortions must be compensated for. The method utilized here to compensate for the amplitude distortions is to predistort the waveform. When the predistorted waveform is influenced by the system, the output waveform has a near constant amplitude modulus

    The Telecommunications and Data Acquisition

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC)

    Advanced space communications architecture study. Volume 2: Technical report

    Get PDF
    The technical feasibility and economic viability of satellite system architectures that are suitable for customer premise service (CPS) communications are investigated. System evaluation is performed at 30/20 GHz (Ka-band); however, the system architectures examined are equally applicable to 14/11 GHz (Ku-band). Emphasis is placed on systems that permit low-cost user terminals. Frequency division multiple access (FDMA) is used on the uplink, with typically 10,000 simultaneous accesses per satellite, each of 64 kbps. Bulk demodulators onboard the satellite, in combination with a baseband multiplexer, convert the many narrowband uplink signals into a small number of wideband data streams for downlink transmission. Single-hop network interconnectivity is accomplished via downlink scanning beams. Each satellite is estimated to weigh 5600 lb and consume 6850W of power; the corresponding payload totals are 1000 lb and 5000 W. Nonrecurring satellite cost is estimated at 110million,withthefirstunitcostat110 million, with the first-unit cost at 113 million. In large quantities, the user terminal cost estimate is $25,000. For an assumed traffic profile, the required system revenue has been computed as a function of the internal rate of return (IRR) on invested capital. The equivalent user charge per-minute of 64-kbps channel service has also been determined

    Measurement and control of a superconducting quantum processor with a fully integrated radio-frequency system on a chip

    Get PDF
    We describe a digital microwave platform called Presto, designed for measurement and control of multiple quantum bits (qubits) and based on the third-generation radio-frequency system on a chip. Presto uses direct digital synthesis to create signals up to 9\ua0GHz on 16 synchronous output ports, while synchronously analyzing responses on 16 input ports. Presto has 16 DC-bias outputs, four inputs and four outputs for digital triggers or markers, and two continuous-wave outputs for synthesizing frequencies up to 15\ua0GHz. Scaling to a large number of qubits is enabled through deterministic synchronization of multiple Presto units. A Python application programming interface configures a firmware for synthesis and analysis of pulses, coordinated by an event sequencer. The analysis integrates template matching (matched filtering) and low-latency (184-254\ua0ns) feedback to enable a wide range of multi-qubit experiments. We demonstrate Presto\u27s capabilities with experiments on a sample consisting of two superconducting qubits connected via a flux-tunable coupler. We show single-shot readout and active reset of a single qubit; randomized benchmarking of single-qubit gates showing 99.972% fidelity, limited by the coherence time of the qubit; and calibration of a two-qubit iSWAP gate

    Prelaunch testing of the GEOS-3 laser reflector array

    Get PDF
    The prelaunch testing performed on the Geos-3 laser reflector array before launch was used to determine the lidar cross section of the array and the distance of the center of gravity of the satellite from the center of gravity of reflected laser pulses as a function of incidence angle. Experimental data are compared to computed results

    Internally Sensed Optical Phased Arrays

    Get PDF
    The performance of existing ground-based space debris laser ranging systems can be improved by directing more light onto space debris by coherently combining multiple lasers using an optical phased array (OPA). If the power delivered to target is sufficiently high then these systems may also provide the capability to remotely manoeuvre space debris via photon radiation pressure and/or ablation. By stabilising the relative output phase of multiple lasers, OPAs form a coherent optical wave-front in the far field. Since the phase of each laser can be controlled independently, they also have the ability to dynamically manipulate the distribution of optical power in the far field, potentially enabling them to compensate for atmospheric turbulence. This beam-forming functionality, combined with their inherent scalability and high power handling capabilities make OPAs a promising technology for future space debris laser ranging and manoeuvring systems. In this thesis, we describe the iterative development of a high-power compatible internally sensed OPA, which---in contrast to externally sensed OPAs that sense the output phase of each laser externally using free-space optics---relies on the small fraction of light that is reflected back into the fibre at the output of the OPA to stabilise its relative output phase. This allows internally sensed OPAs to be implemented entirely within fibre without any dependence on free-space optics at the output, offering potential advantages over externally sensed techniques when operating in the presence of shock and vibration. A proof-of-concept experiment demonstrated the viability of internal sensing, but also highlighted a number of weaknesses that would affect its utility, specifically in supporting high optical powers greater than 100s of mW. An improved high-power compatible internally sensed OPA was designed to overcome these restrictions by isolating sensitive optical components from high optical powers using asymmetric fibre couplers. This concept was initially demonstrated experimentally using slave lasers offset phase-locked to a single master laser, and then again using fibre amplifiers in a master oscillator power amplifier configuration. The experimental demonstration of the fibre amplifier compatible OPA stabilised the relative output phase of three commercial 15 W fibre amplifiers, demonstrating a root-mean-squared output phase stability of λ/194\lambda/194, and the ability to steer the beam at up to 10 kHz. The internally sensed OPA presented here requires the simultaneous measurement, and control of the phase of each emitter in the OPA. This is accomplished using digitally enhanced heterodyne interferometry and digitally implemented phasemeters, both of which rely heavily on high-speed digital signal processing resources provided by field-programmable gate-arrays

    Digital Beamforming Applications and Demonstrations of an RF System-on-a-Chip

    Get PDF
    EM phased array system bandwidth is conventionally constrained by the use of phase shifters for beamsteering, which results in beam squint and pulse dispersion of wideband signals. Wideband antenna performance can be achieved through the use of element-level true time delay (TTD) units, but this is often impractical due to the complexities associated with TTD analog devices. The continued improvement of high-speed analog-to-digital converters (ADC) and digital-to-analog converters (DAC) places digital signal conversion at the element level. This allows TTD beamsteering to be accomplished digitally via a combination of integer-sample delays and fractional-sample delay finite impulse response (FIR) filters, enabling support for wideband communication and radar imaging operating modes. As phased array systems rely on matched channel characteristics, accurate system calibration is paramount for optimum performance. Narrowband systems which implement beamforming via attenuators and phase shifters often employ lookup tables (LUT) containing a set of correction commands to be superimposed on the desired steering operation. These are commonly dependent on current and desired system characteristics, such as operating frequency, steering direction, power level, and/or temperature conditions. In contrast, wideband systems require higher fidelity compensation techniques capable of correcting imbalanced and dispersive channel effects from element-level electronics. This dissertation examines deterministic and adaptive beamforming techniques and provides solutions to the aforementioned challenges by contributing the development and demonstration of a wideband digital beamformer with equalization on an RF system-on-a-chip (RFSoC). Performance metrics of the testbed match or exceed current publications of RFSoC based demonstrations. The RFSoC is a unique, state-of-the-art, highly integrated device that incorporates a field programmable gate array (FPGA), high speed ADCs and DACs with a system-on-a-chip (SOC) architecture onto the same silicon fabric. As much of the digital and analog RF circuitry is now integrated into a single package, these devices are revolutionizing radar and communication systems, reshaping phased array system design strategies. This enabling technology facilitates the development of compact all-digital arrays, massively increasing the available degrees of freedom in system control, a paradigm shift in industry and engineering communities. The beamformer testbed is demonstrated on a sub-Nyquist-sampled 1.6 GHz S-band phased array system implemented using a Xilinx 8-channel 4 GSPS RFSoC. To enable TTD digital beamsteering, each channel is compensated via a conjugate symmetric fractional-sample delay FIR filter bank. By modifying the TTD filter structure to support complex coefficients, channel equalization is integrated with the fractional-sample delays to compensate undesired channel characteristics. To confirm the efficacy of this approach, results are provided for uncalibrated and calibrated system operation. Anechoic chamber measurements are presented as well as the FPGA floorplans showing RFSoC device utilization for both uncalibrated and calibrated configurations

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    NASA Tech Briefs, July 2006

    Get PDF
    Topics covered include: Airport Remote Tower Sensor Systems; Implantable Wireless MEMS Sensors for Medical Uses; Embedded Sensors for Measuring Surface Regression; Coordinating an Autonomous Earth-Observing Sensorweb; Range-Measuring Video Sensors; Stability Enhancement of Polymeric Sensing Films Using Fillers; Sensors for Using Times of Flight to Measure Flow Velocities; Receiver Would Control Phasing of a Phased-Array Antenna; Modern Design of Resonant Edge-Slot Array Antennas; Carbon-Nanotube Schottky Diodes; Simplified Optics and Controls for Laser Communications; Coherent Detection of High-Rate Optical PPM Signals; Multichannel Phase and Power Detector; Using Satellite Data in Weather Forecasting: I; Using Dissimilarity Metrics to Identify Interesting Designs; X-Windows PVT Widget Class; Shuttle Data Center File-Processing Tool in Java; Statistical Evaluation of Utilization of the ISS; Nanotube Dispersions Made With Charged Surfactant; Aerogels for Thermal Insulation of Thermoelectric Devices; Low-Density, Creep-Resistant Single-Crystal Superalloys; Excitations for Rapidly Estimating Flight-Control Parameters; Estimation of Stability and Control Derivatives of an F-15; Tool for Coupling a Torque Wrench to a Round Cable Connector; Ultrasonically Actuated Tools for Abrading Rock Surfaces; Active Struts With Variable Spring Stiffness and Damping; Multiaxis, Lightweight, Computer-Controlled Exercise System; Dehydrating and Sterilizing Wastes Using Supercritical CO2; Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium; Ice-Borehole Probe; Alpha-Voltaic Sources Using Diamond as Conversion Medium; White-Light Whispering-Gallery-Mode Optical Resonators; Controlling Attitude of a Solar-Sail Spacecraft Using Vanes; and Wire-Mesh-Based Sorber for Removing Contaminants from Air
    corecore