4,735 research outputs found

    Proceedings of an ESA-NASA Workshop on a Joint Solid Earth Program

    Get PDF
    The NASA geodynamics program; spaceborne magnetometry; spaceborne gravity gradiometry (characterizing the data type); terrestrial gravity data and comparisons with satellite data; GRADIO three-axis electrostatic accelerometers; gradiometer accommodation on board a drag-free satellite; gradiometer mission spectral analysis and simulation studies; and an opto-electronic accelerometer system were discussed

    Visual-inertial self-calibration on informative motion segments

    Full text link
    Environmental conditions and external effects, such as shocks, have a significant impact on the calibration parameters of visual-inertial sensor systems. Thus long-term operation of these systems cannot fully rely on factory calibration. Since the observability of certain parameters is highly dependent on the motion of the device, using short data segments at device initialization may yield poor results. When such systems are additionally subject to energy constraints, it is also infeasible to use full-batch approaches on a big dataset and careful selection of the data is of high importance. In this paper, we present a novel approach for resource efficient self-calibration of visual-inertial sensor systems. This is achieved by casting the calibration as a segment-based optimization problem that can be run on a small subset of informative segments. Consequently, the computational burden is limited as only a predefined number of segments is used. We also propose an efficient information-theoretic selection to identify such informative motion segments. In evaluations on a challenging dataset, we show our approach to significantly outperform state-of-the-art in terms of computational burden while maintaining a comparable accuracy

    Gradio: Project proposal for satellite gradiometry

    Get PDF
    A gradiometric approach, rather than the more complicated satellite to satellite tracking, is proposed for studying anomalies in the gravitational fields of the Earth and, possibly, other telluric bodies. The first analyses of a gradiometer based on four of ONERA's CACTUS or SUPERCACTUS accelerometers are summarized. it is shown that the obstacles to achieving the required accuracy are not insuperable. The device will be carried in a 1000 kg lens shaped satellite in a heliosynchronous orbit 200 to 300 km in altitude. The first launching is planned for the end of 1987

    Concussion Indication Device

    Get PDF
    In this document we summarize our intent to design and manufacture a device that will be used in conjunction with a football helmet, will detect impact forces to the head, and notify the user to seek out further medical attention when subjected to forces large enough to cause concussions. We describe the large market including all levels of football players and the need for improved technology that will not only be effective in elucidating risks but encouraging players to use the device over the alternatives. To design the device, we have researched the problem of concussions in football and have evidence that there is sufficient technology available to us. In our report we provide all of our documentation available at this stage of development

    SIRU development. Volume 1: System development

    Get PDF
    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results

    Innovative Plastic Optical Fiber Sensors

    Get PDF
    This thesis describes the development of new types of fiber optic sensors for the measurement of mechanical quantities such as displacement, vibration and acceleration. Also, it describes the realization of specific acquisition systems designed to interrogate the developed sensors. Since optical fibers have been historically associated with high speed telecommunication links because of their very large bandwidth and low attenuation, there is a great interest for their employment in sensor applications. Fiber sensors represent a promising solution in many fields since fibers can be used for the measurement of several quantities, not only mechanical as those investigated in this work, but also chemical with the possibility to detect specific chemical or bio-chemical molecules. Among the physical quantities to be detected, the displacement measurement is required in some applications, especially in structural civil and mechanical fields, where it is possible to evaluate the cracks evolution, providing information about the safety of the structure under monitoring in order to detect eventually risky situations. All the developed sensors are able to measure the displacement along one or two axis, that can be employed also during vibration tests especially at high frequencies, and also acceleration sensors to monitor acceleration at low frequencies. The developed sensors are based on plastic optical fibers instead of the traditional glass fibers, which are traditionally employed in optical communications. This change is related to the aim of realizing sensors maintaining the excellent typical characteristics of the fibers, such as electromagnetic immunity, intrinsically fire safety and flexibility of applications, but with costs comparable to those of commercial electromechanical sensors. Indeed, nowadays, the commercial fiber optic sensors are based on glass fibers because they have very good performance. However, they find limited applications due to the high costs of their complex interrogation systems and also for the procedure required to splice the fibers. On the other hand, plastic optical fibers represent a promising alternative because of their geometrical and optical properties that allow employing low-cost non coherent sources such as LED and also simplifying the procedure for the sensor connection and installation. Therefore, the design of the proposed plastic optical fiber displacement sensors is described with the sensor practical arrangement and the realized prototypes. An acquisition system has been designed and realized to characterize the sensors and the characterization results are also provided. Moreover, the development and the characterization of a plastic optical fiber sensor able to measure the displacement in two directions have been described. The main drawback of the developed sensors are stability issues and for this reason laboratory and in situ-tests have been carried out in order to verify the sensor performance over the time. I The results obtained with the stability tests have highlighted the necessity to develop displacement sensors with increased stability. To this aim, a compensation technique based on two different wavelengths has been developed. The same working principle of the developed displacement sensor has been exploited to realize a fiber vibrometer to be employed during the vibration monitoring for measuring without contact the vibrations of the device under test. The sensor development, a suitable calibration procedure developed to overcome the problem of real targets with a non uniform reflectivity, and the experimental tests have been described. Furthermore, the preliminary results concerning the feasibility study of a plastic optical fiber accelerometer are reporte

    Motion-based remote control device for interaction with multimedia content

    Get PDF
    This dissertation describes the development and implementation of techniques to enhance the accuracy of low-complexity lters, making them suitable for remote control devices in consumer electronics. The evolution veri ed in the last years, on multimedia contents, available for consumers in Smart TVs and set-top-boxes, is not raising the expected interest from users, and one of the pointed reasons for this nding is the user interface. Although most current pointing devices rely on relative rotation increments, absolute orientation allows for a more intuitive use and interaction. This possibility is explored in this work as well as the interaction with multimedia contents through gestures. Classical accurate fusion algorithms are computationally intensive, therefore their implementation in low-energy consumption devices is a challenging task. To tackle this problem, a performance study was carried, comparing a relevant set of professional commercial of-the-shelf units, with the developed low-complexity lters in state-of-the-art Magnetic, Angular Rate, Gravity (MARG) sensors. Part of the performance evaluation tests are carried out under harsh conditions to observe the algorithms response in a nontrivial environment. The results demonstrate that the implementation of low-complexity lters using low-cost sensors, can provide an acceptable accuracy in comparison with the more complex units/ lters. These results pave the way for faster adoption of absolute orientation-based pointing devices in interactive multimedia applications, which includes hand-held, battery-operated devices

    Scalable Control Strategies and a Customizable Swarm Robotic Platform for Boundary Coverage and Collective Transport Tasks

    Get PDF
    abstract: Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective operation even in the presence of unknown environmental factors and individual robot failures. Social insect colonies provide a rich source of inspiration for these types of control approaches, since they can perform complex collective tasks under a range of conditions. To validate swarm robotic control strategies, experimental testbeds with large numbers of robots are required; however, existing low-cost robots are specialized and can lack the necessary sensing, navigation, control, and manipulation capabilities. To address these challenges, this thesis presents a formal approach to designing biologically-inspired swarm control strategies for spatially-confined coverage and payload transport tasks, as well as a novel low-cost, customizable robotic platform for testing swarm control approaches. Stochastic control strategies are developed that provably allocate a swarm of robots around the boundaries of multiple regions of interest or payloads to be transported. These strategies account for spatially-dependent effects on the robots' physical distribution and are largely robust to environmental variations. In addition, a control approach based on reinforcement learning is presented for collective payload towing that accommodates robots with heterogeneous maximum speeds. For both types of collective transport tasks, rigorous approaches are developed to identify and translate observed group retrieval behaviors in Novomessor cockerelli ants to swarm robotic control strategies. These strategies can replicate features of ant transport and inherit its properties of robustness to different environments and to varying team compositions. The approaches incorporate dynamical models of the swarm that are amenable to analysis and control techniques, and therefore provide theoretical guarantees on the system's performance. Implementation of these strategies on robotic swarms offers a way for biologists to test hypotheses about the individual-level mechanisms that drive collective behaviors. Finally, this thesis describes Pheeno, a new swarm robotic platform with a three degree-of-freedom manipulator arm, and describes its use in validating a variety of swarm control strategies.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy

    Attitude Measurement and Control Techniques on the Earth's Surface

    Get PDF
    En el presente trabajo se realiza una introducci on a la teor a de la medida de la orientaci on en la super cie terrestre mediante el uso de sensores inerciales y magn eticos con t ecnicas de fusi on de se~nales, a trav es del uso de ltros optimos y complementarios. A continuaci on se hace una presentaci on del formalismo de sistemas de control, en la cual se analiza la estabilidad y el alcance de dichos sistemas, as como dos de los m etodos de control m as comunes, el controlador Proporcional Integral Derivativo y el Regulador Lineal Cuadr atico. Por ultimo, se hace un estudio de la medida para un sistema real, el p endulo invertido con volante de inercia.The following bachelor thesis introduces the basis of the attitude representation and measurement theory on Earth's surface from inertial and magnetic measurement units data, as well as the use of sensor fusion algorithms as the optimal and complementary lters. Moreover, a review of the control system formalism is presented, where the stability and the reach of the controllers is analyzed, as well as two of the most used control techniques at the present time: the Proportional Integral Derivative controller and the Linear Quadratic Regulator. Finally, a study of the measurement and ltering methods on a real inverted pendulum with reaction wheel is conducted.Grupo de Electrónica Aeroespacial, GranaSA
    corecore