1,306 research outputs found

    Kinematic calibration of a 3-DOF spindle head using a double ball bar

    Get PDF
    This paper presents a simple and effective approach for kinematic calibration of a 3-DOF spindle head developed for high-speed machining. This approach is implemented in three steps, (i) error modeling that allows the geometric errors affecting the compensatable and uncompensatable pose accuracy to be classified; (ii) identification of the geometric errors using a set of distance measurements acquired by a double ball bar (DBB) with a single installation; (iii) design of a linearized error compensator for real-time error implementation. Experimental results on a prototype machine show that the compensatable pose accuracy can significantly be improved by the proposed approach

    Vision-based self-calibration and control of parallel kinematic mechanisms without proprioceptive sensing

    Get PDF
    International audienceThis work is a synthesis of our experience over parallel kinematic machine control, which aims at changing the standard conceptual approach to this problem. Indeed, since the task space, the state space and the measurement space can coincide in this class of mechanism, we came to redefine the complete modeling, identification and control methodology. Thus, it is shown in this paper that, generically and with the help of sensor-based control, this methodology does not require any joint measurement, thus opening a path to simplified mechanical design and reducing the number of kinematic parameters to identify. This novel approach was validated on the reference parallel kinematic mechanism (the Gough-Stewart platform) with vision as the exteroceptive sensor

    Altimetric system: Earth observing system. Volume 2h: Panel report

    Get PDF
    A rationale and recommendations for planning, implementing, and operating an altimetric system aboard the Earth observing system (Eos) spacecraft is provided. In keeping with the recommendations of the Eos Science and Mission Requirements Working Group, a complete altimetric system is defined that is capable of perpetuating the data set to be derived from TOPEX/Poseidon, enabling key scientific questions to be addressed. Since the scientific utility and technical maturity of spaceborne radar altimeters is well documented, the discussion is limited to highlighting those Eos-specific considerations that materially impact upon radar altimetric measurements

    Modelling, kinematic parameter identification and sensitivity analysis of a Laser Tracker having the beam source in the rotating head

    Get PDF
    This paper presents a new kinematic model, a parameter identification procedure and a sensitivity analysis of a laser tracker having the beam source in the rotating head. This model obtains the kinematic parameters by the coordinate transformation between successive reference systems following the Denavit–Hartenberg method. One of the disadvantages of laser tracker systems is that the end-user cannot know when the laser tracker is working in a suitable way or when it needs an error correction. The ASME B89.4.19 Standard provides some ranging tests to evaluate the laser tracker performance but these tests take a lot of time and require specialized equipment. Another problem is that the end-user cannot apply the manufacturer’s model because he cannot measure physical errors. In this paper, first the laser tracker kinematic model has been developed and validated with a generator of synthetic measurements using different meshes with synthetic reflector coordinates and known error parameters. Second, the laser tracker has been calibrated with experimental data using the measurements obtained by a coordinate measuring machine as nominal values for different strategies, increasing considerably the laser tracker accuracy. Finally, a sensitivity analysis of the length measurement system tests is presented to recommend the more suitable positions to perform the calibration procedure

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    Get PDF
    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments

    Kinematic calibration of Delta robot using distance measurements

    Get PDF
    This paper deals with kinematic calibration of the Delta robot using distance measurements. The work is mainly placed upon: (1) the error modeling with a goal to classify the source errors affecting both the compensatable and uncompensatable pose accuracy; (2) the full/partial source error identification using a set of distance measurements acquired by a laser tracker; and (3) design of a linearized compensator for real-time error compensation. Experimental results on a prototype show that positioning accuracy of the robot can significantly be improved by the proposed approach

    Development of Force-Space Navigation for Surgical Robotics

    Get PDF
    Surgical robotics have been used for many years in orthopaedic procedures in the hip and knee. Robots tend to offer high accuracy and repeatability but add increased cost, complexity, time, and workflow disruption. This work outlines the design and development of a surgical robot that navigates using force feedback. Flexible components tether the patient to the robot and reaction loads are measured allowing the robot to “feel” its way around the pre-operative plan. Differences calculated between measured and desired loads are converted to Cartesian corrections that the robot used to navigate. The robot was tested first using simple square paths to test accuracy, repeatability and functionality. A pre-operative plan was established for implantation of the surgical system and allowed the robot to be tested doing a complex glenoid implant path. Finally, a study was performed and compared the robot’s surgical method to current surgical techniques of a trained surgical fellow on shoulder analogs. Based on this study, the robot performed as well as or better than the surgeon in almost every measurement parameter with less than 1 mm of implant placement error in many measurement metrics and less than 2° of implant orientation error in each angular measurement

    Geometric and elastostatic calibration of robotic manipulator using partial pose measurements

    Get PDF
    International audienceThe paper deals with geometric and elastostatic calibration of robotic manipulator using partial pose measurements, which do not provide the end-effector orientation. The main attention is paid to the efficiency improvement of identification procedure. In contrast to previous works, the developed calibration technique is based on the direct measurements only. To improve the identification accuracy, it is proposed to use several reference points for each manipulator configuration. This allows avoiding the problem of non-homogeneity of the least-square objective, which arises in the classical identification technique with the full-pose information (position and orientation). Its efficiency is confirmed by the comparison analysis, which deals with the accuracy evaluation of different identification strategies. The obtained theoretical results have been successfully applied to the geometric and elastostatic calibration of serial industrial robot employed in a machining work-cell for aerospace industry
    corecore