1,460 research outputs found

    Improved Depth Map Estimation from Stereo Images based on Hybrid Method

    Get PDF
    In this paper, a stereo matching algorithm based on image segments is presented. We propose the hybrid segmentation algorithm that is based on a combination of the Belief Propagation and Mean Shift algorithms with aim to refine the disparity and depth map by using a stereo pair of images. This algorithm utilizes image filtering and modified SAD (Sum of Absolute Differences) stereo matching method. Firstly, a color based segmentation method is applied for segmenting the left image of the input stereo pair (reference image) into regions. The aim of the segmentation is to simplify representation of the image into the form that is easier to analyze and is able to locate objects in images. Secondly, results of the segmentation are used as an input of the local window-based matching method to determine the disparity estimate of each image pixel. The obtained experimental results demonstrate that the final depth map can be obtained by application of segment disparities to the original images. Experimental results with the stereo testing images show that our proposed Hybrid algorithm HSAD gives a good performance

    A Practical Stereo Depth System for Smart Glasses

    Full text link
    We present the design of a productionized end-to-end stereo depth sensing system that does pre-processing, online stereo rectification, and stereo depth estimation with a fallback to monocular depth estimation when rectification is unreliable. The output of our depth sensing system is then used in a novel view generation pipeline to create 3D computational photography effects using point-of-view images captured by smart glasses. All these steps are executed on-device on the stringent compute budget of a mobile phone, and because we expect the users can use a wide range of smartphones, our design needs to be general and cannot be dependent on a particular hardware or ML accelerator such as a smartphone GPU. Although each of these steps is well studied, a description of a practical system is still lacking. For such a system, all these steps need to work in tandem with one another and fallback gracefully on failures within the system or less than ideal input data. We show how we handle unforeseen changes to calibration, e.g., due to heat, robustly support depth estimation in the wild, and still abide by the memory and latency constraints required for a smooth user experience. We show that our trained models are fast, and run in less than 1s on a six-year-old Samsung Galaxy S8 phone's CPU. Our models generalize well to unseen data and achieve good results on Middlebury and in-the-wild images captured from the smart glasses.Comment: Accepted at CVPR202

    Self-calibration and motion recovery from silhouettes with two mirrors

    Get PDF
    LNCS v. 7724-7727 (pts. 1-4) entitled: Computer vision - ACCV 2012: 11th Asian Conference on Computer Vision ... 2012: revised selected papersThis paper addresses the problem of self-calibration and motion recovery from a single snapshot obtained under a setting of two mirrors. The mirrors are able to show five views of an object in one image. In this paper, the epipoles of the real and virtual cameras are firstly estimated from the intersection of the bitangent lines between corresponding images, from which we can easily derive the horizon of the camera plane. The imaged circular points and the angle between the mirrors can then be obtained from equal angles between the bitangent lines, by planar rectification. The silhouettes produced by reflections can be treated as a special circular motion sequence. With this observation, technique developed for calibrating a circular motion sequence can be exploited to simplify the calibration of a single-view two-mirror system. Different from the state-of-the-art approaches, only one snapshot is required in this work for self-calibrating a natural camera and recovering the poses of the two mirrors. This is more flexible than previous approaches which require at least two images. When more than a single image is available, each image can be calibrated independently and the problem of varying focal length does not complicate the calibration problem. After the calibration, the visual hull of the objects can be obtained from the silhouettes. Experimental results show the feasibility and the preciseness of the proposed approach. © 2013 Springer-Verlag.postprin

    Sensor node localisation using a stereo camera rig

    Get PDF
    In this paper, we use stereo vision processing techniques to detect and localise sensors used for monitoring simulated environmental events within an experimental sensor network testbed. Our sensor nodes communicate to the camera through patterns emitted by light emitting diodes (LEDs). Ultimately, we envisage the use of very low-cost, low-power, compact microcontroller-based sensing nodes that employ LED communication rather than power hungry RF to transmit data that is gathered via existing CCTV infrastructure. To facilitate our research, we have constructed a controlled environment where nodes and cameras can be deployed and potentially hazardous chemical or physical plumes can be introduced to simulate environmental pollution events in a controlled manner. In this paper we show how 3D spatial localisation of sensors becomes a straightforward task when a stereo camera rig is used rather than a more usual 2D CCTV camera
    corecore