2,601 research outputs found

    Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle Spectropolarimetric Imager

    Get PDF
    Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF) model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument's bands (470, 660, and 865 nm). A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof), possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.NASAJPLCenter for Space Researc

    FPGA-Based On-Board Geometric Calibration for Linear CCD Array Sensors

    Get PDF
    With increasing demands in real-time or near real-time remotely sensed imagery applications in such as military deployments, quick response to terrorist attacks and disaster rescue, the on-board geometric calibration problem has attracted the attention of many scientists in recent years. This paper presents an on-board geometric calibration method for linear CCD sensor arrays using FPGA chips. The proposed method mainly consists of four modules—Input Data, Coefficient Calculation, Adjustment Computation and Comparison—in which the parallel computations for building the observation equations and least squares adjustment, are implemented using FPGA chips, for which a decomposed matrix inversion method is presented. A Xilinx Virtex-7 FPGA VC707 chip is selected and the MOMS-2P data used for inflight geometric calibration from DLR (Köln, Germany), are employed for validation and analysis. The experimental results demonstrated that: (1) When the widths of floating-point data from 44-bit to 64-bit are adopted, the FPGA resources, including the utilizations of FF, LUT, memory LUT, I/O and DSP48, are consumed at a fast increasing rate; thus, a 50-bit data width is recommended for FPGA-based geometric calibration. (2) Increasing number of ground control points (GCPs) does not significantly consume the FPGA resources, six GCPs is therefore recommended for geometric calibration. (3) The FPGA-based geometric calibration can reach approximately 24 times faster speed than the PC-based one does. (4) The accuracy from the proposed FPGA-based method is almost similar to the one from the inflight calibration if the calibration model and GCPs number are the same

    Calibration of Deformable Mirrors for Open-Loop Control

    Get PDF
    Deformable mirrors enable the control of wave fronts for the compensation of aberrations in optical systems and/or for beam scanning. Manufacturers of deformable mirrors typically provide calibration data that encode for the fabrication tolerances among the actuators and mirror segments to support open-loop control with high wave front fidelity and accuracy. We report a calibration method that enables users of the deformable mirrors to measure the response of the mirror itself to validate and improve the calibration data. For this purpose, an imaging off-axis Michelson interferometer was built that allowed measuring the mirror topography with high accuracy and sufficient spatial resolution. By calibrating each actuator over its entire range, the open-loop performance for our deformable mirror was improved

    Photometric Stereo-Based Depth Map Reconstruction for Monocular Capsule Endoscopy

    Get PDF
    The capsule endoscopy robot can only use monocular vision due to the dimensional limit. To improve the depth perception of the monocular capsule endoscopy robot, this paper proposes a photometric stereo-based depth map reconstruction method. First, based on the characteristics of the capsule endoscopy robot system, a photometric stereo framework is established. Then, by combining the specular property and Lambertian property of the object surface, the depth of the specular highlight point is estimated, and the depth map of the whole object surface is reconstructed by a forward upwind scheme. To evaluate the precision of the depth estimation of the specular highlight region and the depth map reconstruction of the object surface, simulations and experiments are implemented with synthetic images and pig colon tissue, respectively. The results of the simulations and experiments show that the proposed method provides good precision for depth map reconstruction in monocular capsule endoscopy

    Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. an EOF Approach to the Spatial-Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets

    Get PDF
    Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Nio over Indonesia and central South America is also captured with the EOF technique

    Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation

    Get PDF
    In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical

    INDEPENDENT ON-ORBIT GEOMETRIC CALIBRATION OF OPTICAL SATELLITE BASED ON WEIGHTED VIRTUAL OBSERVATION

    Get PDF
    On-orbit geometric calibration is an essential technology to improve the initial geometric accuracy of the optical satellite images. The presented methods usually take the absolute constraint from calibration site data into the imaging model to deduce exact systematic error parameters. However, the characteristic of strong dependence on the high-accuracy calibration site data leads to limitations such as high cost and poor efficiency of these conventional methods. In order to make better use of the mutual constraints among the images, and to get rid of the dependence of calibration site, we conduct an investigation on the on-orbit geometric calibration using the mutual constraints of overlapped images instead of absolute constraint from calibration site for optical satellite. To ensure the stable solution of calibration equation, a weighted virtual observation is introduced into calibration model to improve its condition. The method is verified with a pair of simulated images, and the satisfactory results indicate that the method is effective and reasonable

    Open source tool for DSMs generation from high resolution optical satellite imagery. Development and testing of an OSSIM plug-in

    Get PDF
    The fully automatic generation of digital surface models (DSMs) is still an open research issue. From recent years, computer vision algorithms have been introduced in photogrammetry in order to exploit their capabilities and efficiency in three-dimensional modelling. In this article, a new tool for fully automatic DSMs generation from high resolution satellite optical imagery is presented. In particular, a new iterative approach in order to obtain the quasi-epipolar images from the original stereopairs has been defined and deployed. This approach is implemented in a new Free and Open Source Software (FOSS) named Digital Automatic Terrain Extractor (DATE) developed at the Geodesy and Geomatics Division, University of Rome ‘La Sapienza’, and conceived as an Open Source Software Image Map (OSSIM) plug-in. DATE key features include: the epipolarity achievement in the object space, thanks to the images ground projection (Ground quasi-Epipolar Imagery (GrEI)) and the coarse-to-fine pyramidal scheme adopted; the use of computer vision algorithms in order to improve the processing efficiency and make the DSMs generation process fully automatic; the free and open source aspect of the developed code. The implemented plug-in was validated through two optical datasets, GeoEye-1 and the newest Pléiades-high resolution (HR) imagery, on Trento (Northern Italy) test site. The DSMs, generated on the basis of the metadata rational polynomial coefficients only, without any ground control point, are compared to a reference lidar in areas with different land use/land cover and morphology. The results obtained thanks to the developed workflow are good in terms of statistical parameters (root mean square error around 5 m for GeoEye-1 and around 4 m for Pléiades-HR imagery) and comparable with the results obtained through different software by other authors on the same test site, whereas in terms of efficiency DATE outperforms most of the available commercial software. These first achievements indicate good potential for the developed plug-in, which in a very near future will be also upgraded for synthetic aperture radar and tri-stereo optical imagery processing
    • …
    corecore