102 research outputs found

    Calibration Changes to Terra MODIS Collection-5 Radiances for CERES Edition 4 Cloud Retrievals

    Get PDF
    Previous research has revealed inconsistencies between the Collection 5 (C5) calibrations of certain channels common to the Terra and Aqua MODerate-resolution Imaging Spectroradiometers (MODIS). To achieve consistency between the Terra and Aqua MODIS radiances used in the Clouds and the Earths Radiant Energy System (CERES) Edition 4 (Ed4) cloud property retrieval system, adjustments were developed and applied to the Terra C5 calibrations for channels 1-5, 7, 20, and 26. These calibration corrections were developed independently of those used for MODIS Collection 6 (C6) data, which became available after the CERES Ed4 processing had commenced. The comparisons demonstrate that the corrections applied to the Terra C5 data for CERES Edition 4 generally resulted in Terra- Aqua radiance consistency that is as good as or better than that of the C6 datasets. The C5 adjustments resulted in more consistent Aqua and Terra cloud property retrievals than seen in the previous CERES edition. Other calibration artifacts were found in one of the corrected channels and in some of the uncorrected thermal channels after Ed4 began. Where corrections were neither developed nor applied, some artifacts are likely to have been introduced into the Ed4 cloud property record. For example, the degradation in the Aqua MODIS 0.65- m channel in both the C5 and C6 datasets affects trends in cloud optical depth retrievals. Thus, despite the much-improved consistency achieved for the Terra and Aqua datasets in Ed4, the CERES Ed4 cloud property datasets should be used cautiously for cloud trend studies because of those remaining calibration artifacts

    Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets

    Get PDF
    Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for improvement in the current aerosol processing lies in a more formalized and standardized sampling (and most importantly, cloud screening) whereas optimization of the aerosol algorithm is deemed to be an important yet less critical element

    Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets

    Get PDF
    The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument

    A Study of 15-Year Aerosol Optical Thickness and Direct Shortwave Aerosol Radiative Effect Trends using MODIS, MISR, CALIOP and CERES

    Get PDF
    By combining Collection 6 Moderate Resolution and Imaging Spectroradiometer (MODIS) and Version 22 Multi-angle Imaging Spectroradiometer (MISR) aerosol products with Cloud and Earth’s Radiant Energy System (CERES) flux products, the aerosol optical thickness (AOT, at 0.55 µm) and shortwave (SW) aerosol radiative effect (SWARE) trends are studied over ocean for the near-full Terra (2000–2015) and Aqua (2002–2015) data records. Despite differences in sampling methods, regional SWARE and AOT trends are highly correlated with one another. Over global oceans, weak SWARE (cloud-free SW flux) and AOT trends of 0.5–0.6 Wm−2 (−0.5 to −0.6 Wm−2 ) and 0.002 AOT decade−1 are found using Terra data. Near-zero AOT and SWARE trends are also found for using Aqua data, regardless of the angular distribution models (ADMs) used. Regionally, positive AOT and cloud-free SW flux (negative SWARE) trends are found over the Bay of Bengal, the Arabian Sea, the Arabian/Persian Gulf and the Red Sea, while statistically significant negative trends are derived over the Mediterranean Sea and the eastern US coast. In addition, the global mean instantaneous SW aerosol direct forcing efficiencies are found to be ∼ −60 Wm−2 AOT−1 , with corresponding SWARE values of ∼ −7 Wm−2 from both Aqua and Terra data, again regardless of CERES ADMs used. Regionally, SW aerosol direct forcing efficiency values of ∼ −40 Wm−2 AOT−1 are found over the southwest coast of Africa where smoke aerosol particles dominate in summer. Larger (in magnitude) SW aerosol direct forcing efficiency values of −50 to −80 Wm−2 AOT−1 are found over several other dust- and pollutant-aerosol-dominated regions. Lastly, the AOT and SWARE trends from this study are also intercompared with aerosol trends (such as active-based ones) from several previous studies. Findings suggest that a cohesive understanding of the changing aerosol skies can be achieved through the analysis of observations from both passive- and active-based analyses, as well as from both narrowband and broadband datasets

    Using two-stream theory to capture fluctuations of satellite-perceived TOA SW radiances reflected from clouds over ocean

    Get PDF
    Shortwave (SW) fluxes estimated from broadband radiometry rely on empirically gathered and hemispherically resolved fields of outgoing top-of-atmosphere (TOA) radiances. This study aims to provide more accurate and precise fields of TOA SW radiances reflected from clouds over ocean by introducing a novel semiphysical model predicting radiances per narrow sun-observer geometry. This model was statistically trained using CERES-measured radiances paired with MODIS-retrieved cloud parameters as well as reanalysis-based geophysical parameters. By using radiative transfer approximations as a framework to ingest the above parameters, the new approach incorporates cloud-top effective radius and above-cloud water vapor in addition to traditionally used cloud optical depth, cloud fraction, cloud phase, and surface wind speed. A two-stream cloud albedo – serving to statistically incorporate cloud optical thickness and cloud-top effective radius – and Cox–Munk ocean reflectance were used to describe an albedo over each CERES footprint. Effective-radius-dependent asymmetry parameters were obtained empirically and separately for each viewing-illumination geometry. A simple equation of radiative transfer, with this albedo and attenuating above-cloud water vapor as inputs, was used in its log-linear form to allow for statistical optimization. We identified the two-stream functional form that minimized radiance residuals calculated against CERES observations and outperformed the state-of-the-art approach for most observer geometries outside the sun-glint and solar zenith angles between 20 and 70∘, reducing the median SD of radiance residuals per solar geometry by up to 13.2 % for liquid clouds, 1.9 % for ice clouds, and 35.8 % for footprints containing both cloud phases. Geometries affected by sun glint (constituting between 10 % and 1 % of the discretized upward hemisphere for solar zenith angles of 20 and 70∘, respectively), however, often showed weaker performance when handled with the new approach and had increased residuals by as much as 60 % compared to the state-of-the-art approach. Overall, uncertainties were reduced for liquid-phase and mixed-phase footprints by 5.76 % and 10.81 %, respectively, while uncertainties for ice-phase footprints increased by 0.34 %. Tested for a variety of scenes, we further demonstrated the plausibility of scene-wise predicted radiance fields. This new approach may prove useful when employed in angular distribution models and may result in improved flux estimates, in particular dealing with clouds characterized by small or large droplet/crystal sizes

    A multi-satellite climatology of clouds, radiation and precipitation in southern West Africa and comparison to climate models

    Get PDF
    Southern West Africa (SWA) has a large population that relies on highly variable monsoon rainfall, yet climate models show little consensus over projected precipitation in this region. Understanding of the current and future climate of SWA is further complicated by rapidly increasing anthropogenic emissions and a lack of surface observations. Using multiple satellite observations, the ERA-Interim reanalysis, and four climate models, we document the climatology of cloud, precipitation and radiation over SWA in June-July, highlight discrepancies among satellite products, and identify shortcomings in climate models and ERA-Interim. Large differences exist between monthly mean cloud cover estimates from satellites, which range from 68 to 94 %. In contrast, differences among satellite observations in top of atmosphere outgoing radiation and surface precipitation are smaller, with monthly means of about 230 W m–2 of longwave radiation, 145 W m–2 of shortwave radiation and 5.87 mm day–1 of precipitation. Both ERA-Interim and the climate models show less total cloud cover than observations, mainly due to underestimating low cloud cover. Errors in cloud cover, along with uncertainty in surface albedo, lead to a large spread of outgoing shortwave radiation. Both ERA-Interim and the climate models also show signs of convection developing too early in the diurnal cycle, with associated errors in the diurnal cycles of precipitation and outgoing longwave radiation. Clouds, radiation and precipitation are linked in an analysis of the regional energy budget, which shows that inter-annual variability of precipitation and dry static energy divergence are strongly linked

    Potential Nighttime Contamination of CERES Clear-sky Field of View by Optically Thin Cirrus during the CRYSTAL-FACE Campaign

    Get PDF
    We investigate the outgoing broadband longwave (LW, 5 to approx. 200 microns) and window (WIN, 8 to approx. 12 microns) channel radiances at the top of atmosphere (TOA) under clear-sky conditions, using data acquired by the Cloud and the Earth s Radiant Energy System (CERES) and Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments onboard the NASA Terra satellite platform. In this study, detailed analyses are performed on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds product to understand the radiative effect of thin cirrus. The data are acquired over the Florida area during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers Florida Area Cirrus Experiment (CRYSTAL-FACE) field program. Of particular interest is the anisotropy associated with the radiation field. Measured CERES broadband radiances are compared to those obtained from rigorous radiative transfer simulations. Analysis of results from this comparison indicates that the simulated radiances tend to be larger than their measured counterparts, with differences ranging from 2.1% to 8.3% for the LW band and from 1.7% to 10.6% for the WIN band. The averaged difference in radiance is approximately 4% for both the LW and WIN channels. A potential cause for the differences could be the presence of thin cirrus (i.e., optically thin ice clouds with visible optical thicknesses smaller than approximately 0.3). The detection and quantitative analysis of these thin cirrus clouds are challenging even with sophisticated multispectral instruments. While large differences in radiance between the CERES observations and the theoretical calculations are found, the corresponding difference in the anisotropic factors is very small (0.2%). Furthermore, sensitivity studies show that the influence due to a 1 K bias of the surface temperature on the errors of the LW and WIN channel radiances is of the same order as that associated with a 2% bias of the surface emissivity. The LW and WIN errors associated with a 5% bias of water vapor amount in the lower atmosphere in conjunction with a 50% bias of water vapor amount in the upper atmosphere is similar to that of a 1 K bias of the vertical temperature profile. Even with the uncertainties considered for these various factors, the simulated LW and WIN radiances are still larger than the observed radiances if thin cirrus clouds are excluded

    Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    Get PDF
    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent)

    Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland

    Get PDF
    Cloud retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi-NPP satellite are evaluated using a combination of ground-based instruments providing vertical profiles of clouds. The ground-based measurements are obtained from the Atmospheric Radiation Measurement (ARM) programme mobile facility, which was deployed in Hyytiala, Finland, between February and September 2014 for the Biogenic Aerosols - Effects on Clouds and Climate (BAECC) campaign. The satellite cloud parameters cloud top height (CTH) and liquid water path (LWP) are compared with ground-based CTH obtained from a cloud mask created using lidar and radar data and LWP acquired from a multi-channel microwave radiometer. Clouds from all altitudes in the atmosphere are investigated. The clouds are diagnosed as single or multiple layer using the ground-based cloud mask. For single-layer clouds, satellites overestimated CTH by 326 (14 %) on average. When including multilayer clouds, satellites underestimated CTH by on average 169 m (5.8 %). MODIS collection 6 overestimated LWP by on average 13 g m(-2) (11 %). Interestingly, LWP for MODIS collection 5.1 is slightly overestimated by Aqua (4.56 %) but is underestimated by Terra (14.3 %). This underestimation may be attributed to a known issue with a drift in the reflectance bands of the MODIS instrument on Terra. This evaluation indicates that the satellite cloud parameters selected show reasonable agreement with their ground-based counterparts over Finland, with minimal influence from the large solar zenith angle experienced by the satellites in this high-latitude location.Peer reviewe
    corecore