824 research outputs found

    A study of selected environmental quality remote sensors for free flyer missions launched from the space shuttle

    Get PDF
    The sensors were examined for adaptability to shuttle by reviewing pertinent information regarding sensor characteristics as they related to the shuttle and Multimission Modular Spacecraft environments. This included physical and electrical characteristics, data output and command requirements, attitude and orientation requirements, thermal and safety requirements, and adaptability and modification for space. The sensor requirements and characteristics were compared with the corresponding shuttle and Multimission Modular Spacecraft characteristics and capabilities. On this basis the adaptability and necessary modifications for each sensor were determined. A number of the sensors were examined in more detail and estimated cost for the modifications was provided

    Logic/Clock-Path-Aware At-Speed Scan Test Generation for Avoiding False Capture Failures and Reducing Clock Stretch

    Get PDF
    IR-drop induced by launch switching activity (LSA) in capture mode during at-speed scan testing increases delay along not only logic paths (LPs) but also clock paths (Cps). Excessive extra delay along LPs compromises test yields due to false capture failures, while excessive extra delay along CPs compromises test quality due to test clock stretch. This paper is the first to mitigate the impact of LSA on both LPs and CPs with a novel LCPA (Logic/Clock Path-Aware) at-speed scan test generation scheme, featuring (1) a new metric for assessing the risk of false capture failures based on the amount of LSA around both LPs and CPs, (2) a procedure for avoiding false capture failures by reducing LSA around LPs or masking uncertain test responses, and (3) a procedure for reducing test clock stretch by reducing LSA around CPs. Experimental results demonstrate the effectiveness of the LCPA scheme in improving test yields and test quality.2015 IEEE 24th Asian Test Symposium (ATS), 22-25 November 2015, Mumbai, Indi

    Systems and Methods for the Spectral Calibration of Swept Source Optical Coherence Tomography Systems

    Get PDF
    This dissertation relates to the transition of the state of the art of swept source optical coherence tomography (SS-OCT) systems to a new realm in which the image acquisition speed is improved by an order of magnitude. With the aid of a better quality imaging technology, the speed-up factor will considerably shorten the eye-exam clinical visits which in turn improves the patient and doctor interaction experience. These improvements will directly lower associated medical costs for eye-clinics and patients worldwide. There are several other embodiments closely related to Optical Coherence Tomography (OCT) that could benefit from the ideas presented in this dissertation including: optical coherence microscopy (OCM), full-field OCT (FF-OCT), optical coherence elastography (OCE), optical coherence tomography angiography (OCT-A), anatomical OCT (aOCT), optical coherence photoacoustic microscopy (OC-PAM), micro optical coherence tomography (µ OCT), among others. In recent decades, OCT has established itself as the de-facto imaging process that most ophthalmologists refer to in their clinical practices. In a broader sense, optical coherence tomography is used in applications when low penetration and high resolution are desired. These applications include different fields of biomedical sciences including cardiology, dermatology, and pulmonary related sciences. Many other industrial applications including quality control and precise measurements have also been reported that are related to the OCT technology. Every new iteration of OCT technology has always come about with advanced signal processing and data acquisition algorithms using mixed-signal architectures, calibration and signal processing techniques. The existing industrial practices towards data acquisition, processing, and image creation relies on conventional signal processing design flows, which extensively employ continuous/discrete techniques that are both time-consuming and costly. The ideas presented in this dissertation can take the technology to a new dimension of quality of service

    Calibration System Design and Determination of Filter Calibration Requirements for SNAP

    Get PDF
    Thesis (PhD) - Indiana University, Astronomy, 2007The SuperNova/Acceleration Probe (SNAP) is a proposed space-based, wide-field telescope designed to measure the properties of dark energy in our universe. SNAP will measure ~2000 type Ia supernovae, and the reduction of systematic errors in the relative spectrophotometric measurements will be critical to the mission science. A stringent systematic error requirement of 2% in color photometry is driving the SNAP calibration methodology and system design into new areas of space-based, radiometric calibration for astronomical missions. At the forefront of these new calibration techniques is the use of narrowband light and photodiodes to measure the precise irradiance incident on SNAP filters and detectors. Using these techniques, I have built the Monochromatic Illumination and Cryogenic Calibration System (MICCS) to address the SNAP calibration hardware requirements. With this system, I can transfer the NIST irradiance calibration of an InGaAs photodiode to transfer photodiodes operated at 140K as well as measure the transmission of interference filters at incident angles and temperature similar to that used on the SNAP focal plane. Due to size and light efficiency constraints, I also investigated the use of light emitting diodes (LEDs) as calibrating light sources onboard SNAP. When coupled with calibrated photodiodes, a selection of LEDs could fly onboard SNAP and be used to track changes in the SNAP interference filters during the lifetime of the experiment. The error from this LED calibration technique will be propagated to the dark energy parameters to determine what design constraints are required of the onboard illumination system

    Spot Pyrometer Analysis and System Design

    Get PDF
    The primary goal of this project was to design and construct a spot pyrometer for Analog Devices, Inc. We examined commercially available remote temperature sensors to determine their operating characteristics and we evaluated individual IR sensors. We designed, constructed, and calibrated our own spot pyrometer using a thermopile sensor, analog to digital converter, and a USB interface, meeting our specifications

    Sensor Development for Physiological and Environmental Monitoring

    Get PDF
    abstract: The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value for sensor technologies are increased when the sensors are developed into innovative measuring system for application uses in the Aerospace, Defense, and Healthcare industries. While sensors are not new, their increased performance, size reduction, and decrease in cost has opened the door for innovative sensor combination for portable devices that could be worn or easily moved around. With this opportunity for further development of sensor use through concept engineering development, three concept projects for possible innovative portable devices was undertaken in this research. One project was the development of a pulse oximeter devise with fingerprint recognition. The second project was prototyping a portable Bluetooth strain gage monitoring system. The third project involved sensors being incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable devices. All these systems were successfully tested in lab.Dissertation/ThesisMasters Thesis Engineering 201

    CALIBRATION OF AN ULTRASONIC TRANSMISSIVE COMPUTED TOMOGRAPHY SYSTEM

    Get PDF
    Tato dizertace je zaměřena na medicínskou zobrazovací modalitu – ultrazvukovou počítačovou tomografii – a algoritmy zlepšující kvalitu zobrazení, zejména kalibraci USCT přístroje. USCT je novou modalitou kombinující ultrazvukový přenos signálů a principy tomografické rekonstrukce obrazů vyvíjených pro jiné tomografické systémy. V principu lze vytvořit kvantitativní 3D obrazové objemy s vysokým rozlišením a kontrastem. USCT je primárně určeno pro diagnózu rakoviny prsu. Autor spolupracoval na projektu Institutu Zpracování dat a Elektroniky, Forschungszentrum Karlsruhe, kde je USCT systém vyvíjen. Jeden ze zásadních problémů prototypu USCT v Karlsruhe byla absence kalibrace. Tisíce ultrazvukových měničů se liší v citlivosti, směrovosti a frekvenční odezvě. Tyto parametry jsou navíc proměnné v čase. Další a mnohem závažnější problém byl v pozičních odchylkách jednotlivých měničů. Všechny tyto aspekty mají vliv na konečnou kvalitu rekonstruovaných obrazů. Problém kalibrace si autor zvolil jako hlavní téma dizertace. Tato dizertace popisuje nové metody v oblastech rekonstrukce útlumových obrazů, kalibrace citlivosti měničů a zejména geometrická kalibrace pozic měničů. Tyto metody byly implementovány a otestovány na reálných datech pocházejících z prototypu USCT z Karlsruhe.This dissertation is centered on a medical imaging modality – the ultrasonic computed tomography (USCT) – and algorithms which improve the resulting image quality, namely the calibration of a USCT device. The USCT is a novel imaging modality which combines the phenomenon of ultrasound and image reconstruction principles developed for other tomographic systems. It is capable of producing quantitative 3D image volumes with high resolution and tissue contrast and is primarily aimed at breast cancer diagnosis. The author was involved in a joint research project at the Institute of Data Processing and Electronics, Forschungszentrum Karlsruhe (German National Research Center), where a USCT system is being developed. One of the main problems in the Karlsruhe USCT prototype was the absence of any calibration. The thousands of transducers used in the system have deviations in sensitivity, directivity, and frequency response. These parameters change over time as the transducers age. Also the mechanical positioning of the transducer elements is not precise. All these aspects greatly affect the overall quality of the reconstructed images. The problem of calibration of a USCT system was chosen as the main topic for this dissertation. The dissertation thesis presents novel methods in the area of reconstruction of attenuation images, sensitivity calibration, and mainly geometrical calibration. The methods were implemented and tested on real data generated by the Karlsruhe USCT device.

    The ATLAS TRT electronics

    Get PDF
    The ATLAS inner detector consists of three sub-systems: the pixel detector spanning the radius range 4cm-20cm, the semiconductor tracker at radii from 30 to 52 cm, and the transition radiation tracker (TRT), tracking from 56 to 107 cm. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift tubes (or straws) and of electron identification based on transition radiation from fibres or foils interleaved between the straws themselves. This paper describes the on and off detector electronics for the TRT as well as the TRT portion of the data acquisition (DAQ) system

    A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    Get PDF
    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration

    Full stack development toward a trapped ion logical qubit

    Get PDF
    Quantum error correction is a key step toward the construction of a large-scale quantum computer, by preventing small infidelities in quantum gates from accumulating over the course of an algorithm. Detecting and correcting errors is achieved by using multiple physical qubits to form a smaller number of robust logical qubits. The physical implementation of a logical qubit requires multiple qubits, on which high fidelity gates can be performed. The project aims to realize a logical qubit based on ions confined on a microfabricated surface trap. Each physical qubit will be a microwave dressed state qubit based on 171Yb+ ions. Gates are intended to be realized through RF and microwave radiation in combination with magnetic field gradients. The project vertically integrates software down to hardware compilation layers in order to deliver, in the near future, a fully functional small device demonstrator. This thesis presents novel results on multiple layers of a full stack quantum computer model. On the hardware level a robust quantum gate is studied and ion displacement over the X-junction geometry is demonstrated. The experimental organization is optimized through automation and compressed waveform data transmission. A new quantum assembly language purely dedicated to trapped ion quantum computers is introduced. The demonstrator is aimed at testing implementation of quantum error correction codes while preparing for larger scale iterations.Open Acces
    corecore