324 research outputs found

    State of the Art on Artificial Intelligence in Land Use Simulation

    Get PDF
    [Abstract] This review presents a state of the art in artificial intelligence applied to urban planning and particularly to land-use predictions. In this review, different articles after the year 2016 are analyzed mostly focusing on those that are not mentioned in earlier publications. Most of the articles analyzed used a combination of Markov chains and cellular automata to predict the growth of urban areas and metropolitan regions. We noticed that most of these simulations were applied in various areas of China. An analysis of the publication of articles in the area over time is included.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (ref. ED431G/01 and ED431D 2017/16), the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002 and UNLC13-13-3503), and the European Regional Development Funds (FEDER). CITIC, as Research Center accredited by Galician University System, is funded by “Consellería de Cultura, Educación e Universidade from Xunta de Galicia,” supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014–2020, and the remaining 20% by “Secretaria Xeral de Universidades” (grant no. ED431G 2019/01)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G 2019/0

    Predicting vertical urban growth using genetic evolutionary algorithms in Tokyo’s minato ward

    Get PDF
    [Abstract] This article explores the use of evolutionary genetic algorithms to predict scenarios of urban vertical growth in large urban centers. Tokyo’s Minato Ward is used as a case study because it has been one of the fastest growing skylines over the last 20 years. This study uses a genetic algorithm that simulates the vertical urban growth of Minato Ward to make predictions from pre-established inputted parameters. The algorithm estimates not only the number of future high-rise buildings but also the specific areas in the ward that are more likely to accommodate new high-rise developments in the future. The evolutionary model results are compared with ongoing high-rise developments in order to evaluate the accuracy of the genetic algorithm in simulating future vertical urban growth. The results of this study show that the use of genetic evolutionary computation is a promising way to predict scenarios of vertical urban growth in terms of location as well as the number of future buildings

    Simulating Land Use Land Cover Change Using Data Mining and Machine Learning Algorithms

    Get PDF
    The objectives of this dissertation are to: (1) review the breadth and depth of land use land cover (LUCC) issues that are being addressed by the land change science community by discussing how an existing model, Purdue\u27s Land Transformation Model (LTM), has been used to better understand these very important issues; (2) summarize the current state-of-the-art in LUCC modeling in an attempt to provide a context for the advances in LUCC modeling presented here; (3) use a variety of statistical, data mining and machine learning algorithms to model single LUCC transitions in diverse regions of the world (e.g. United States and Africa) in order to determine which tools are most effective in modeling common LUCC patterns that are nonlinear; (4) develop new techniques for modeling multiple class (MC) transitions at the same time using existing LUCC models as these models are rare and in great demand; (5) reconfigure the existing LTM for urban growth boundary (UGB) simulation because UGB modeling has been ignored by the LUCC modeling community, and (6) compare two rule based models for urban growth boundary simulation for use in UGB land use planning. The review of LTM applications during the last decade indicates that a model like the LTM has addressed a majority of land change science issues although it has not explicitly been used to study terrestrial biodiversity issues. The review of the existing LUCC models indicates that there is no unique typology to differentiate between LUCC model structures and no models exist for UGB. Simulations designed to compare multiple models show that ANN-based LTM results are similar to Multivariate Adaptive Regression Spline (MARS)-based models and both ANN and MARS-based models outperform Classification and Regression Tree (CART)-based models for modeling single LULC transition; however, for modeling MC, an ANN-based LTM-MC is similar in goodness of fit to CART and both models outperform MARS in different regions of the world. In simulations across three regions (two in United States and one in Africa), the LTM had better goodness of fit measures while the outcome of CART and MARS were more interpretable and understandable than the ANN-based LTM. Modeling MC LUCC require the examination of several class separation rules and is thus more complicated than single LULC transition modeling; more research is clearly needed in this area. One of the greatest challenges identified with MC modeling is evaluating error distributions and map accuracies for multiple classes. A modified ANN-based LTM and a simple rule based UGBM outperformed a null model in all cardinal directions. For UGBM model to be useful for planning, other factors need to be considered including a separate routine that would determine urban quantity over time

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Comparing the structural uncertainty and uncertainty management in four common Land Use Cover Change (LUCC) model software packages

    Get PDF
    Research on the uncertainty of Land Use Cover Change (LUCC) models is still limited. Through this paper, we aim to globally characterize the structural uncertainty of four common software packages (CA_Markov, Dinamica EGO, Land Change Modeler, Metronamica) and analyse the options that they offer for uncertainty management. The models have been compared qualitatively, based on their structures and tools, and quantitatively, through a study case for the city of Cape Town. Results proved how each model conceptualised the modelled system in a different way, which led to different outputs. Statistical or automatic approaches did not provide higher repeatability or validation scores than user-driven approaches. The available options for uncertainty management vary depending on the model. Communication of uncertainties is poor across all models.Spanish GovernmentEuropean Commission INCERTIMAPS PGC2018-100770-B-100Spanish Ministry of Economy and Competitiveness and the European Social Fund [Ayudas para contratos predoctorales para la formacion de doctores 2014]University of Granada [Contratos Puente 2018]Spanish Ministry of Science and Innovation [Ayudas para contratos Juan de la Cierva-for-macion] 2019-FJC2019-040043University of Cape Town (Centre for Transport Studies
    corecore