909 research outputs found

    Calibrating an Air-Ground Control System from Motion Correspondences

    Get PDF
    In this paper we consider the problem of controlling the motion of a vehicle moving on a ground plane based on aerial imagery. In the course of this work we propose a novel analysis of the relationship between the velocity of the vehicle on the ground plane and the velocity of its projection in the image. We show that this relationship provides information about a subset of the parameters of the homography relating the ground plane to the aerial image plane and describe how we can recover this relationship from available measurements

    Simultaneous Parameter Calibration, Localization, and Mapping

    Get PDF
    The calibration parameters of a mobile robot play a substantial role in navigation tasks. Often these parameters are subject to variations that depend either on changes in the environment or on the load of the robot. In this paper, we propose an approach to simultaneously estimate a map of the environment, the position of the on-board sensors of the robot, and its kinematic parameters. Our method requires no prior knowledge about the environment and relies only on a rough initial guess of the parameters of the platform. The proposed approach estimates the parameters online and it is able to adapt to non-stationary changes of the configuration. We tested our approach in simulated environments and on a wide range of real-world data using different types of robotic platforms. (C) 2012 Taylor & Francis and The Robotics Society of Japa

    Feature Based Calibration of a Network of Kinect Sensors

    Get PDF
    The availability of affordable depth sensors in conjunction with common RGB cameras, such as the Microsoft Kinect, can provide robots with a complete and instantaneous representation of the current surrounding environment. However, in the problem of calibrating multiple camera systems, traditional methods bear some drawbacks, such as requiring human intervention. In this thesis, we propose an automatic and reliable calibration framework that can easily estimate the extrinsic parameters of a Kinect sensor network. Our framework includes feature extraction, Random Sample Consensus and camera pose estimation from high accuracy correspondences. We also implement a robustness analysis of position estimation algorithms. The result shows that our system could provide precise data under certain amount noise. Keywords Kinect, Multiple Camera Calibration, Feature Points Extraction, Correspondence, RANSA

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Refractive Structure-From-Motion Through a Flat Refractive Interface

    Get PDF
    Recovering 3D scene geometry from underwater images involves the Refractive Structure-from-Motion (RSfM) problem, where the image distortions caused by light refraction at the interface between different propagation media invalidates the single view point assumption. Direct use of the pinhole camera model in RSfM leads to inaccurate camera pose estimation and consequently drift. RSfM methods have been thoroughly studied for the case of a thick glass interface that assumes two refractive interfaces between the camera and the viewed scene. On the other hand, when the camera lens is in direct contact with the water, there is only one refractive interface. By explicitly considering a refractive interface, we develop a succinct derivation of the refractive fundamental matrix in the form of the generalised epipolar constraint for an axial camera. We use the refractive fundamental matrix to refine initial pose estimates obtained by assuming the pinhole model. This strategy allows us to robustly estimate underwater camera poses, where other methods suffer from poor noise-sensitivity. We also formulate a new four view constraint enforcing camera pose consistency along a video which leads us to a novel RSfM framework. For validation we use synthetic data to show the numerical properties of our method and we provide results on real data to demonstrate performance within laboratory settings and for applications in endoscopy

    Planning and Control of Mobile Robots in Image Space from Overhead Cameras

    Get PDF
    In this work, we present a framework for the development of a planar mobile robot controller based on image plane feedback. We show that the design of such a motion controller can be accomplished in the image plane by making use of a subset of the parameters that relate the image plane to the ground plane, while still leveraging the simplifications offered by modeling the system as a differentially flat system. Our method relies on a waypoint-based trajectory generator, with all the waypoints specified in the image, as seen by an overhead observer. We present some results from simulation as well as from experiments that validate the ideas presented in this work and discuss some ideas for future wor

    Geometrically-driven underground camera modeling and calibration with coplanarity constraints for Boom-type roadheader

    Get PDF
    The conventional calibration methods based on perspective camera model are not suitable for underground camera with two-layer glasses, which is specially designed for explosion-proof and dust removal in coal mine. The underground camera modeling and calibration algorithms are urgently needed to improve the precision and reliability of underground visual measurement system. This paper presents a novel geometrically-driven underground camera calibration algorithm for Boom-type roadheader. The underground camera model is established under coplanarity constraints, considering explicitly the impact of refraction triggered by the two-layer glasses and deriving the geometrical relationship of equivalent collinearity equations. On this basis, we perform parameters calibration based on a geometrically-driven calibration model, which is a 2D-2D correspondences between the image points and object coordinates of the plannar target. A hybrid LM-PSO algorithm is further proposed in terms of the dynamic combination of the Levenberg-Marqurdt (LM) and Particle Swarm Optimization (PSO), which optimize the underground camera calibration results by minimizing the error of the nonlinear underground camera model. The experiment results demonstrate that the pose errors caused by the two-layer glass refraction are well corrected by the proposed method. The accuracy of the cutting-head pose estimation has increased by 55.73%, meeting the requirements of underground excavations
    corecore