7 research outputs found

    Calibrated Explanations for Regression

    Full text link
    Artificial Intelligence (AI) is often an integral part of modern decision support systems (DSSs). The best-performing predictive models used in AI-based DSSs lack transparency. Explainable Artificial Intelligence (XAI) aims to create AI systems that can explain their rationale to human users. Local explanations in XAI can provide information about the causes of individual predictions in terms of feature importance. However, a critical drawback of existing local explanation methods is their inability to quantify the uncertainty associated with a feature's importance. This paper introduces an extension of a feature importance explanation method, Calibrated Explanations (CE), previously only supporting classification, with support for standard regression and probabilistic regression, i.e., the probability that the target is above an arbitrary threshold. The extension for regression keeps all the benefits of CE, such as calibration of the prediction from the underlying model with confidence intervals, uncertainty quantification of feature importance, and allows both factual and counterfactual explanations. CE for standard regression provides fast, reliable, stable, and robust explanations. CE for probabilistic regression provides an entirely new way of creating probabilistic explanations from any ordinary regression model and with a dynamic selection of thresholds. The performance of CE for probabilistic regression regarding stability and speed is comparable to LIME. The method is model agnostic with easily understood conditional rules. An implementation in Python is freely available on GitHub and for installation using pip making the results in this paper easily replicable.Comment: 30 pages, 11 figures (replaced due to omitted author, which is the only change made

    Conformal Prediction: a Unified Review of Theory and New Challenges

    Full text link
    In this work we provide a review of basic ideas and novel developments about Conformal Prediction -- an innovative distribution-free, non-parametric forecasting method, based on minimal assumptions -- that is able to yield in a very straightforward way predictions sets that are valid in a statistical sense also in in the finite sample case. The in-depth discussion provided in the paper covers the theoretical underpinnings of Conformal Prediction, and then proceeds to list the more advanced developments and adaptations of the original idea.Comment: arXiv admin note: text overlap with arXiv:0706.3188, arXiv:1604.04173, arXiv:1709.06233, arXiv:1203.5422 by other author

    Classifier Calibration: A survey on how to assess and improve predicted class probabilities

    Full text link
    This paper provides both an introduction to and a detailed overview of the principles and practice of classifier calibration. A well-calibrated classifier correctly quantifies the level of uncertainty or confidence associated with its instance-wise predictions. This is essential for critical applications, optimal decision making, cost-sensitive classification, and for some types of context change. Calibration research has a rich history which predates the birth of machine learning as an academic field by decades. However, a recent increase in the interest on calibration has led to new methods and the extension from binary to the multiclass setting. The space of options and issues to consider is large, and navigating it requires the right set of concepts and tools. We provide both introductory material and up-to-date technical details of the main concepts and methods, including proper scoring rules and other evaluation metrics, visualisation approaches, a comprehensive account of post-hoc calibration methods for binary and multiclass classification, and several advanced topics
    corecore