3,032 research outputs found

    CAST: Cluster-Aware Self-Training for Tabular Data

    Full text link
    Self-training has gained attraction because of its simplicity and versatility, yet it is vulnerable to noisy pseudo-labels. Several studies have proposed successful approaches to tackle this issue, but they have diminished the advantages of self-training because they require specific modifications in self-training algorithms or model architectures. Furthermore, most of them are incompatible with gradient boosting decision trees, which dominate the tabular domain. To address this, we revisit the cluster assumption, which states that data samples that are close to each other tend to belong to the same class. Inspired by the assumption, we propose Cluster-Aware Self-Training (CAST) for tabular data. CAST is a simple and universally adaptable approach for enhancing existing self-training algorithms without significant modifications. Concretely, our method regularizes the confidence of the classifier, which represents the value of the pseudo-label, forcing the pseudo-labels in low-density regions to have lower confidence by leveraging prior knowledge for each class within the training data. Extensive empirical evaluations on up to 20 real-world datasets confirm not only the superior performance of CAST but also its robustness in various setups in self-training contexts.Comment: 17 pages with appendi

    Improving Multi-task Learning via Seeking Task-based Flat Regions

    Full text link
    Multi-Task Learning (MTL) is a widely-used and powerful learning paradigm for training deep neural networks that allows learning more than one objective by a single backbone. Compared to training tasks separately, MTL significantly reduces computational costs, improves data efficiency, and potentially enhances model performance by leveraging knowledge across tasks. Hence, it has been adopted in a variety of applications, ranging from computer vision to natural language processing and speech recognition. Among them, there is an emerging line of work in MTL that focuses on manipulating the task gradient to derive an ultimate gradient descent direction to benefit all tasks. Despite achieving impressive results on many benchmarks, directly applying these approaches without using appropriate regularization techniques might lead to suboptimal solutions on real-world problems. In particular, standard training that minimizes the empirical loss on the training data can easily suffer from overfitting to low-resource tasks or be spoiled by noisy-labeled ones, which can cause negative transfer between tasks and overall performance drop. To alleviate such problems, we propose to leverage a recently introduced training method, named Sharpness-aware Minimization, which can enhance model generalization ability on single-task learning. Accordingly, we present a novel MTL training methodology, encouraging the model to find task-based flat minima for coherently improving its generalization capability on all tasks. Finally, we conduct comprehensive experiments on a variety of applications to demonstrate the merit of our proposed approach to existing gradient-based MTL methods, as suggested by our developed theory.Comment: 29 pages, 11 figures, 6 table

    Toward Explainable Fashion Recommendation

    Full text link
    Many studies have been conducted so far to build systems for recommending fashion items and outfits. Although they achieve good performances in their respective tasks, most of them cannot explain their judgments to the users, which compromises their usefulness. Toward explainable fashion recommendation, this study proposes a system that is able not only to provide a goodness score for an outfit but also to explain the score by providing reason behind it. For this purpose, we propose a method for quantifying how influential each feature of each item is to the score. Using this influence value, we can identify which item and what feature make the outfit good or bad. We represent the image of each item with a combination of human-interpretable features, and thereby the identification of the most influential item-feature pair gives useful explanation of the output score. To evaluate the performance of this approach, we design an experiment that can be performed without human annotation; we replace a single item-feature pair in an outfit so that the score will decrease, and then we test if the proposed method can detect the replaced item correctly using the above influence values. The experimental results show that the proposed method can accurately detect bad items in outfits lowering their scores

    Confidence-Calibrated Face and Kinship Verification

    Full text link
    In this paper, we investigate the problem of prediction confidence in face and kinship verification. Most existing face and kinship verification methods focus on accuracy performance while ignoring confidence estimation for their prediction results. However, confidence estimation is essential for modeling reliability and trustworthiness in such high-risk tasks. To address this, we introduce an effective confidence measure that allows verification models to convert a similarity score into a confidence score for any given face pair. We further propose a confidence-calibrated approach, termed Angular Scaling Calibration (ASC). ASC is easy to implement and can be readily applied to existing verification models without model modifications, yielding accuracy-preserving and confidence-calibrated probabilistic verification models. In addition, we introduce the uncertainty in the calibrated confidence to boost the reliability and trustworthiness of the verification models in the presence of noisy data. To the best of our knowledge, our work presents the first comprehensive confidence-calibrated solution for modern face and kinship verification tasks. We conduct extensive experiments on four widely used face and kinship verification datasets, and the results demonstrate the effectiveness of our proposed approach. Code and models are available at https://github.com/cnulab/ASC.Comment: 14 pages, 10 figures, and 9 tables, IEEE Transactions on Information Forensics and Securit

    Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation. Experiments show that our map-guided curriculum adaptation significantly outperforms state-of-the-art methods on nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can improve results on data with ambiguous content such as our benchmark and profit safety-oriented applications involving invalid inputs.Comment: IEEE T-PAMI 202

    Predicting Out-of-Domain Generalization with Local Manifold Smoothness

    Full text link
    Understanding how machine learning models generalize to new environments is a critical part of their safe deployment. Recent work has proposed a variety of complexity measures that directly predict or theoretically bound the generalization capacity of a model. However, these methods rely on a strong set of assumptions that in practice are not always satisfied. Motivated by the limited settings in which existing measures can be applied, we propose a novel complexity measure based on the local manifold smoothness of a classifier. We define local manifold smoothness as a classifier's output sensitivity to perturbations in the manifold neighborhood around a given test point. Intuitively, a classifier that is less sensitive to these perturbations should generalize better. To estimate smoothness we sample points using data augmentation and measure the fraction of these points classified into the majority class. Our method only requires selecting a data augmentation method and makes no other assumptions about the model or data distributions, meaning it can be applied even in out-of-domain (OOD) settings where existing methods cannot. In experiments on robustness benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our manifold smoothness measure and actual OOD generalization on over 3,000 models evaluated on over 100 train/test domain pairs.Comment: 18 pages, 3 figure
    • …
    corecore