918 research outputs found

    Calibrated Prediction with Covariate Shift via Unsupervised Domain Adaptation

    Get PDF
    Reliable uncertainty estimates are an important tool for helping autonomous agents or human decision makers understand and leverage predictive models. However, existing approaches to estimating uncertainty largely ignore the possibility of covariate shift—i.e., where the real-world data distribution may differ from the training distribution. As a consequence, existing algorithms can overestimate certainty, possibly yielding a false sense of confidence in the predictive model. We propose an algorithm for calibrating predictions that accounts for the possibility of covariate shift, given labeled examples from the training distribution and unlabeled examples from the real-world distribution. Our algorithm uses importance weighting to correct for the shift from the training to the real-world distribution. However, importance weighting relies on the training and real-world distributions to be sufficiently close. Building on ideas from domain adaptation, we additionally learn a feature map that tries to equalize these two distributions. In an empirical evaluation, we show that our proposed approach outperforms existing approaches to calibrated prediction when there is covariate shift

    Distributionally Robust Learning for Unsupervised Domain Adaptation

    Get PDF
    We propose a distributionally robust learning (DRL) method for unsupervised domain adaptation (UDA) that scales to modern computer vision benchmarks. DRL can be naturally formulated as a competitive two-player game between a predictor and an adversary that is allowed to corrupt the labels, subject to certain constraints, and reduces to incorporating a density ratio between the source and target domains (under the standard log loss). This formulation motivates the use of two neural networks that are jointly trained - a discriminative network between the source and target domains for density-ratio estimation, in addition to the standard classification network. The use of a density ratio in DRL prevents the model from being overconfident on target inputs far away from the source domain. Thus, DRL provides conservative confidence estimation in the target domain, even when the target labels are not available. This conservatism motivates the use of DRL in self-training for sample selection, and we term the approach distributionally robust self-training (DRST). In our experiments, DRST generates more calibrated probabilities and achieves state-of-the-art self-training accuracy on benchmark datasets. We demonstrate that DRST captures shape features more effectively, and reduces the extent of distributional shift during self-training

    Unsupervised Adversarial Depth Estimation using Cycled Generative Networks

    Full text link
    While recent deep monocular depth estimation approaches based on supervised regression have achieved remarkable performance, costly ground truth annotations are required during training. To cope with this issue, in this paper we present a novel unsupervised deep learning approach for predicting depth maps and show that the depth estimation task can be effectively tackled within an adversarial learning framework. Specifically, we propose a deep generative network that learns to predict the correspondence field i.e. the disparity map between two image views in a calibrated stereo camera setting. The proposed architecture consists of two generative sub-networks jointly trained with adversarial learning for reconstructing the disparity map and organized in a cycle such as to provide mutual constraints and supervision to each other. Extensive experiments on the publicly available datasets KITTI and Cityscapes demonstrate the effectiveness of the proposed model and competitive results with state of the art methods. The code and trained model are available on https://github.com/andrea-pilzer/unsup-stereo-depthGAN.Comment: To appear in 3DV 2018. Code is available on GitHu
    • …
    corecore