55,596 research outputs found

    Graphics calculator use in examinations: accident or design?

    Get PDF
    As graphics calculators become more available, interest will focus on how to incorporate them appropriately into curriculum structures, and particularly into examinations. We describe and exemplify a typology of use of graphics calculators in mathematics examinations, from the perspective of people designing examinations, together with some principles for the awarding of partial credit to student responses. This typology can be used to help design examinations in which students are permitted to use graphics calculators as well as to interrogate existing examination practice

    The importance of being accessible: The graphics calculator in mathematics education

    Get PDF
    The first decade of the availability of graphics calculators in secondary schools has just concluded, although evidence for this is easier to find in some countries and schools than in others, since there are gross socio-economic differences in both cases. It is now almost the end of the second decade since the invention of microcomputers and their appearance in mathematics educational settings. Most of the interest in technology for mathematics education has been concerned with microcomputers. But there has been a steady increase in interest in graphics calculators by students, teachers, curriculum developers and examination authorities, in growing recognition that accessibility of technology at the level of the individual student is the key factor in responding appropriately to technological change; the experience of the last decade suggests very strongly that mathematics teachers are well advised to pay more attention to graphics calculators than to microcomputers. There are clear signs that the commercial marketplace, especially in the United States, is acutely aware of this trend. It was recently reported that current US sales of graphics calculators are around six million units per year, and rising. There are now four major corporations developing products aimed directly at the high school market, with all four producing graphics calculators of high quality and beginning to understand the educational needs of students and their teachers. To get some evidence of this interest, I scanned a recent issue (April 1995) of The Mathematics Teacher, the NCTM journal focussed on high school mathematics. The evidence was very strong: of almost 20 full pages devoted to paid advertising, nine featured graphics calculators, while only two featured computer products, with two more featuring both computers and graphics calculators. The main purposes of this paper are to explain and justify this heightened level of interest in graphics calculators at the secondary school level, and to identify some of the resulting implications for mathematics education, both generally, and in the South-East Asian region

    Using Graphing Calculators to Integrate Mathematics and Science

    Get PDF
    The computational, graphing, statistical and programming capabilities of today’s graphing calculators make it possible for teachers and students to explore aspects of functions and investigate real-world situations in ways that were previously inaccessible because of computational constraints. Many of the features of graphing calculators can be used to integrate topics from mathematics and science. Here we provide a few illustrations of activities that use the graphing, parametric graphing, regression, and recursion features of graphing calculators to study mathematics in science contexts

    Graphing calculators in the teaching and learning of mathematics: a research bibliography

    No full text
    This review suggests that using graphing calculators in mathematics education can enable students to approach situations graphically, numerically and symbolically, and can support students’ visualisation, allowing them to explore situations which they may not otherwise be able to tackle (and thus perhaps enable them to take their mathematics to a more advanced level). In this way, using graphing calculators can lead to higher achievement among students, perhaps through increased student use of graphical solution strategies, improved understanding of functions, and increased teacher time spent on presentation and explanation of graphs, tables and problem solving activities (compared with students not using such calculators). The impact of the availability of this form of calculator on teaching methods and curricula appears to have been more limited, with teachers reportedly tending to use graphing calculators as an extension of the way they have always taught, rather than provoking any radical change in style of teaching or design of the curriculum

    Graphics calculators in upper secondary courses

    Get PDF
    This paper has been produced on request of the Secondary Education Authority, as part of a process of considering the potential impact of graphics calculators on upper secondary school courses. The paper provides background on this matter for the Authority and for committee members, including syllabus committees that may be affected by the decision to permit the use of graphics calculators in Tertiary Entrance Examinations

    A double-edged sword: Use of computer algebra systems in first-year Engineering Mathematics and Mechanics courses

    Get PDF
    Many secondary-level mathematics students have experience with graphical calculators from high school. For the purposes of this paper we define graphical calculators as those able to perform rudimentary symbolic manipulation and solve complicated equations requiring very modest user knowledge. The use of more advanced computer algebra systems e.g. Maple, Mathematica, Mathcad, Matlab/MuPad is becoming more prevalent in tertiary-level courses. This paper explores our students’ experience using one such system (MuPad) in first-year tertiary Engineering Mathematics and Mechanics courses. The effectiveness of graphical calculators and computer algebra systems in mathematical pedagogy has been investigated by a multitude of educational researchers (e.g. Ravaglia et al. 1998). Most of these studies found very small or no correlation between student use of graphical calculators or exposure to computer algebra systems with future achievement in mathematics courses (Buteau et al. 2010). In this paper we focus instead on students’ attitude towards a more advanced standalone computer algebra system (MuPad), and whether students’ inclination to use the system is indicative of their mathematical understanding. Paper describing some preliminary research into use of computer algebra systems for teaching engineering mathematics

    Graphics calculators and algebra

    Get PDF
    The personal technology of the graphics calculator is presently the only one likely to be available widely enough to influence curriculum design and implementation on a large scale. The algebra curriculum of the past is overburdened with symbolic manipulation at the expense of understanding for most students. But algebra is much more than just symbolic manipulation. Connections between some aspects of algebra: expressing generality, functions, equations and advanced algebra and some graphics calculator capabilities are briefly described. It is suggested that these kinds of connections need to be taken into account in developing the algebra curriculum as well as in classroom teaching

    Graphics calculators and assessment

    Get PDF
    Graphics calculators are powerful tools for learning mathematics and we want our students to learn to use them effectively. The use of these hand held personal computers provides opportunities for learning in interactive and dynamic ways. However, it is not until their use is totally integrated into all aspects of the curriculum that students regard them with due importance. This includes their use in all kinds of assessment tasks such as assignments, tests and examinations as well as in activities and explorations aimed at developing students’ understanding. The incorporation of graphics calculators into assessment tasks requires careful construction of these tasks. In this paper, discuss issues of equity relating to calculator models, levels of calculator use and the purpose and design of appropriate tasks. We also describe a typology we have developed to assist in the design and wording of assessment tasks which encourage appropriate use of graphics calculators, but which do not compromise important course objectives

    Rapid desktop assessments of environmental flows

    Get PDF
    Environmental flows / Calculators / Computer techniques / Rivers / Ecosystems

    Graphics calculators in the mathematics curriculum: Integration or differentiation?

    Get PDF
    Graphics calculators are examples of powerful technologies that we want our students to learn to use well. However if we use them in our courses only for learning, students will not regard them with due importance because they are not integrated into the assessment. On the other hand, if graphics calculators are integrated into both learning and assessment there are risks associated with students becoming calculator dependent, issues of equity arise associated with calculator access and there may be problems with setting an appropriate examination. We discuss this dilemma in the light of our experiences and the reactions of our students over the last two years
    • …
    corecore