8 research outputs found

    TURBOMOLE: Today and Tomorrow

    Get PDF
    TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light–matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE’s functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree–Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties

    The Dalton quantum chemistry program system

    Get PDF
    Dalton is a powerful general\u2010purpose program system for the study of molecular electronic structure at the Hartree\u2013Fock, Kohn\u2013Sham, multiconfigurational self\u2010consistent\u2010field, M\uf8ller\u2013Plesset, configuration\u2010interaction, and coupled\u2010cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic\u2010structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge\u2010origin\u2010invariant manner. Frequency\u2010dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one\u2010, two\u2010, and three\u2010photon processes. Environmental effects may be included using various dielectric\u2010medium and quantum\u2010mechanics/molecular\u2010mechanics models. Large molecules may be studied using linear\u2010scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platform

    Coupled-cluster techniques for computational chemistry: The CFOUR program package

    Get PDF
    An up-to-date overview of the CFOUR program system is given. After providing a brief outline of the evolution of the program since its inception in 1989, a comprehensive presentation is given of its well-known capabilities for high-level coupled-cluster theory and its application to molecular properties. Subsequent to this generally well-known background information, much of the remaining content focuses on lesser-known capabilities of CFOUR, most of which have become available to the public only recently or will become available in the near future. Each of these new features is illustrated by a representative example, with additional discussion targeted to educating users as to classes of applications that are now enabled by these capabilities. Finally, some speculation about future directions is given, and the mode of distribution and support for CFOUR are outlined

    Density functional theory for large molecular systems

    Get PDF
    Nøyaktige simuleringer av kjemiske og biologiske prosesser på molekylært nivå har lenge vært uoppnålig for en rekke molekylære systemer, og har nå blitt mulig for mange av disse systemene gjennom ny metodeutvikling av Simen Reine, Trygve Helgaker og medarbeidere ved Universitetet i Oslo. Datasimuleringer er utbredt innen kjemi og relaterte felt som biologi, farmasi og medisin. Kvantekjemiske metoder er fundamentale for de mest nøyaktig simuleringsteknikkene, og er til stor hjelp ved bestemmelse og prediksjon av molekylære egenskaper, som for eksempel molekylers struktur, og gir i tillegg viktig og detaljert innsikt i kjemiske reaksjoner - både kvalitativt og kvantitativt. Anvendelsesområdet er nært knyttet til metodenes nøyaktighet, effektivitet og brukervennelighet. Utviklingen av nye og forbedrede metoder gjør oss i stand til å studere molekylære systemer som foreløpig har vært utenfor rekkevidde, og gir oss mer nøyaktig beskrivelse av de systemene vi allerede behandler idag. Som en konsekvens vil man kunne redusere bruken av kostbare og tidkrevende eksperimenter og samtidig hjelpe forskere verden over til bedre å forstå kjemiske mekanismer. De fleste kvantekjemiske beregninger som utføres idag benytter tetthetsfunksjonalteori (DFT), da denne metoden utgjør et godt kompromiss mellom nøyaktighet og beregningstid. Selv om DFT er meget nyttig, er dagens metoder begrenset til systemer bestående av noen få hundre atomer, og utelukker derfor en rekke systemer, for eksempel proteiner. I doktorgraden "Tetthetsfunksjonalteori for store molekylære systemer" har nye metoder innen DFT blitt utviklet med tanke på rutinemessige beregninger for store systemer. Beregninger for systemer med 1400 atomer er rapportert og metodene er i etterkant blitt benyttet for systemer med opp til 4000 atomer
    corecore