353 research outputs found

    The development of virtual leaf surface models for interactive agrichemical spray applications

    Get PDF
    This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered

    Innovative Tools For Planning, Analysis, and Management of UAV Photogrammetric Surveys

    Get PDF
    The Unmanned Aerial System (UAV) is widely used in the photogrammetric surveys both for structures and small areas. The geomatics approach, for the several applications where the 3D modeling is required, focuses the attention on the metric quality of the final products of the survey. As widely known, the quality of results derives from the quality of images acquisition phase, which needs an accurate planning phase. Actually, the planning phase is typically managed using dedicated tools, adapted from the traditional aerial-photogrammetric flight plan. Unfortunately, UAV flight has features completely different from the traditional one, hence the use of UAV for photogrammetric applications today requires a growth in the planning knowledge. The basic idea of the present research work is to provide a tool for planning a photogrammetric survey with UAV, called \u201cUnmanned Photogrammetric Office\u201d (U.Ph.O.), that considers the morphology of the object, the effective visibility of its surface, in the respect of the metric precisions. The usual planning tools require the classical parameters of a photogrammetric planning: flight distance from the surface, images overlaps and geometric parameters of the camera. The created \u201cOffice suite\u201d U.Ph.O. allows a realistic planning of a photogrammetric survey, requiring additionally an approximate knowledge of the Digital Surface Model (DSM) and the attitude parameters, potentially changing along the route. The planning products will be the realistic overlapping of the images, the Ground Sample Distance (GSD) and the precision on each pixel taking into account the real geometry. The different tested procedures, the solution proposed to estimates the realistic precisions in the particular case of UAV surveys and the obtained results, are described in this thesis work, with an overview on the recently development of UAV surveys and technologies related to them

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection
    corecore