1,767 research outputs found

    A comparative study of nonparametric methods for pattern recognition

    Get PDF
    The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal

    Motion-capture-based hand gesture recognition for computing and control

    Get PDF
    This dissertation focuses on the study and development of algorithms that enable the analysis and recognition of hand gestures in a motion capture environment. Central to this work is the study of unlabeled point sets in a more abstract sense. Evaluations of proposed methods focus on examining their generalization to users not encountered during system training. In an initial exploratory study, we compare various classification algorithms based upon multiple interpretations and feature transformations of point sets, including those based upon aggregate features (e.g. mean) and a pseudo-rasterization of the capture space. We find aggregate feature classifiers to be balanced across multiple users but relatively limited in maximum achievable accuracy. Certain classifiers based upon the pseudo-rasterization performed best among tested classification algorithms. We follow this study with targeted examinations of certain subproblems. For the first subproblem, we introduce the a fortiori expectation-maximization (AFEM) algorithm for computing the parameters of a distribution from which unlabeled, correlated point sets are presumed to be generated. Each unlabeled point is assumed to correspond to a target with independent probability of appearance but correlated positions. We propose replacing the expectation phase of the algorithm with a Kalman filter modified within a Bayesian framework to account for the unknown point labels which manifest as uncertain measurement matrices. We also propose a mechanism to reorder the measurements in order to improve parameter estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler to efficiently sample measurement matrices. In the process, we indirectly propose a constrained k-means clustering algorithm. Simulations verify the utility of AFEM against a traditional expectation-maximization algorithm in a variety of scenarios. In the second subproblem, we consider the application of positive definite kernels and the earth mover\u27s distance (END) to our work. Positive definite kernels are an important tool in machine learning that enable efficient solutions to otherwise difficult or intractable problems by implicitly linearizing the problem geometry. We develop a set-theoretic interpretation of ENID and propose earth mover\u27s intersection (EMI). a positive definite analog to ENID. We offer proof of EMD\u27s negative definiteness and provide necessary and sufficient conditions for ENID to be conditionally negative definite, including approximations that guarantee negative definiteness. In particular, we show that ENID is related to various min-like kernels. We also present a positive definite preserving transformation that can be applied to any kernel and can be used to derive positive definite EMD-based kernels, and we show that the Jaccard index is simply the result of this transformation applied to set intersection. Finally, we evaluate kernels based on EMI and the proposed transformation versus ENID in various computer vision tasks and show that END is generally inferior even with indefinite kernel techniques. Finally, we apply deep learning to our problem. We propose neural network architectures for hand posture and gesture recognition from unlabeled marker sets in a coordinate system local to the hand. As a means of ensuring data integrity, we also propose an extended Kalman filter for tracking the rigid pattern of markers on which the local coordinate system is based. We consider fixed- and variable-size architectures including convolutional and recurrent neural networks that accept unlabeled marker input. We also consider a data-driven approach to labeling markers with a neural network and a collection of Kalman filters. Experimental evaluations with posture and gesture datasets show promising results for the proposed architectures with unlabeled markers, which outperform the alternative data-driven labeling method

    Vision-Aided Navigation for GPS-Denied Environments Using Landmark Feature Identification

    Get PDF
    In recent years, unmanned autonomous vehicles have been used in diverse applications because of their multifaceted capabilities. In most cases, the navigation systems for these vehicles are dependent on Global Positioning System (GPS) technology. Many applications of interest, however, entail operations in environments in which GPS is intermittent or completely denied. These applications include operations in complex urban or indoor environments as well as missions in adversarial environments where GPS might be denied using jamming technology. This thesis investigate the development of vision-aided navigation algorithms that utilize processed images from a monocular camera as an alternative to GPS. The vision-aided navigation approach explored in this thesis entails defining a set of inertial landmarks, the locations of which are known within the environment, and employing image processing algorithms to detect these landmarks in image frames collected from an onboard monocular camera. These vision-based landmark measurements effectively serve as surrogate GPS measurements that can be incorporated into a navigation filter. Several image processing algorithms were considered for landmark detection and this thesis focuses in particular on two approaches: the continuous adaptive mean shift (CAMSHIFT) algorithm and the adaptable compressive (ADCOM) tracking algorithm. These algorithms are discussed in detail and applied for the detection and tracking of landmarks in monocular camera images. Navigation filters are then designed that employ sensor fusion of accelerometer and rate gyro data from an inertial measurement unit (IMU) with vision-based measurements of the centroids of one or more landmarks in the scene. These filters are tested in simulated navigation scenarios subject to varying levels of sensor and measurement noise and varying number of landmarks. Finally, conclusions and recommendations are provided regarding the implementation of this vision-aided navigation approach for autonomous vehicle navigation systems

    Human metrology for person classification and recognition

    Get PDF
    Human metrological features generally refers to geometric measurements extracted from humans, such as height, chest circumference or foot length. Human metrology provides an important soft biometric that can be used in challenging situations, such as person classification and recognition at a distance, where hard biometric traits such as fingerprints and iris information cannot easily be acquired. In this work, we first study the question of predictability and correlation in human metrology. We show that partial or available measurements can be used to predict other missing measurements. We then investigate the use of human metrology for the prediction of other soft biometrics, viz. gender and weight. The experimental results based on our proposed copula-based model suggest that human body metrology contains enough information for reliable prediction of gender and weight. Also, the proposed copula-based technique is observed to reduce the impact of noise on prediction performance. We then study the question of whether face metrology can be exploited for reliable gender prediction. A new method based solely on metrological information from facial landmarks is developed. The performance of the proposed metrology-based method is compared with that of a state-of-the-art appearance-based method for gender classification. Results on several face databases show that the metrology-based approach resulted in comparable accuracy to that of the appearance-based method. Furthermore, we study the question of person recognition (classification and identification) via whole body metrology. Using CAESAR 1D database as baseline, we simulate intra-class variation with various noise models. The experimental results indicate that given enough number of features, our metrology-based recognition system can have promising performance that is comparable to several recent state-of-the-art recognition systems. We propose a non-parametric feature selection methodology, called adapted k-nearest neighbor estimator, which does not rely on intra-class distribution of the query set. This leads to improved results over other nearest neighbor estimators (as feature selection criteria) for moderate number of features. Finally we quantify the discrimination capability of human metrology, from both individuality and capacity perspectives. Generally, a biometric-based recognition technique relies on an assumption that the given biometric is unique to an individual. However, the validity of this assumption is not yet generally confirmed for most soft biometrics, such as human metrology. In this work, we first develop two schemes that can be used to quantify the individuality of a given soft-biometric system. Then, a Poisson channel model is proposed to analyze the recognition capacity of human metrology. Our study suggests that the performance of such a system depends more on the accuracy of the ground truth or training set

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network

    A Confidence Paradigm for Classification Systems

    Get PDF
    There is no universally accepted methodology to determine how much confidence one should have in a classifier output. This research proposes a framework to determine the level of confidence in an indication from a classifier system where the output is or can be transformed into a posterior probability estimate. This is a theoretical framework that attempts to unite the viewpoints of the classification system developer (or engineer) and the classification system user (or war-fighter). The paradigm is based on the assumptions that the system confidence acts like, or can be modeled as a value and that indication confidence can be modeled as a function of the posterior probability estimates. The introduction of the non-declaration possibility induces the production of a higher-level value model that weighs the contribution of engineering confidence and associated non-declaration rate. Now, the task becomes to choose the appropriate threshold to maximize this overarching value function. This paradigm is developed in a setting considering only in-library problems, but it is applied to out-of-library problems as well. Introduction of out-of-library problems requires expansion of the overarching value model. This confidence measure is a direct link between traditional decision analysis techniques and traditional pattern recognition techniques. This methodology is applied to multiple data sets, and experimental results show the behavior that would be expected from a rational confidence paradigm
    • …
    corecore