15 research outputs found

    Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory

    Get PDF
    A recently popularized approach for the calculation of pseudocontact shifts (PCSs) based on first-principles quantum chemistry (QC) leads to different results than the classic “semiempirical” equation involving the susceptibility tensor. Studies that attempted a comparison of theory and experiment led to conflicting conclusions with respect to the preferred theoretical approach. In this Letter, we show that after inclusion of previously neglected terms in the full Hamiltonian, one can deduce the semiempirical equations from a rigorous QC-based treatment. It also turns out that in the long-distance limit, one can approximate the complete A tensor in terms of the g tensor. By means of Kohn–Sham density functional theory calculations, we numerically confirm the long-distance expression for the A tensor and the theoretically predicted scaling behavior of the different terms. Our derivation suggests a computational strategy in which one calculates the susceptibility tensor and inserts it into the classic equation for the PCS

    The electronic and geometric structure of [NiFe] hydrogenases studied by theoretical spectroscopy

    Get PDF
    [NiFe] hydrogenases catalyze the reversible oxidative cleavage of molecular hydrogen at high rates. In the present study, DFT was employed to investigate the geometric and electronic structure of various redox-states of [NiFe] hydrogenase by comparison of computed with experimental data in particular of magnetochemical properties

    Development of efficient and low-scaling methods to compute molecular properties at MP2 and double-hybrid DFT levels

    Get PDF
    This thesis introduces new methods to compute molecular properties at the level of second-order Møller-Plesset perturbation theory (MP2) and double-hybrid density functional theory, building on a reformulation in atomic orbitals and exploiting the rank deficiency of the (pseudo-)density matrices, thus reducing the scaling behavior with respect to the size of the basis set. By furthermore employing the resolution-of-the-identity approximation, low-scaling and efficient MP2 energy gradients are presented, where significant two-electron integrals are screened using a distance-including integral estimation technique. With this, the forces and the hyperfine coupling constants of systems larger than previously computable at the MP2-level are obtained. In the second part of this thesis, the locality of the spin density in many molecular systems is exploited in the computation of the hyperfine coupling constants, leading to further speed-ups and allowing for a thorough investigation of the effect of the protein environment on the hyperfine coupling within the core region of a pyruvate formate lyase. With this efficient method, studying the effect of nuclear motion on the accuracy of the computed hyperfine coupling constants is possible. The study presented in this thesis demonstrates that both electron correlation and vibrational motion are crucial for an accurate theoretical description. When calculating magnetic properties, the dependence on the choice of gauge origins needs to be considered. This effect is studied systematically, and in detail, in a fourth project of this thesis for the computation of electronic g-tensors, for which it was previously assumed that the computation is largely independent of the choice of the gauge-origin. The study clearly contradicts this assumption and motivates the use of gauge including atomic orbitals in future work on electronic g-tensors. In a last part, this work transfers the algorithmic developments on the computation of analytic gradients to the computation of nuclear magnetic resonance (NMR) shieldings at the MP2-level. Though a sublinear scaling ansatz to compute the NMR shielding tensor per nucleus is available, the lack of an efficient implementation and the large dependency on the size of the basis sets prohibits the accurate computation of the shielding tensor of medium- to large-sized molecules. Furthermore, while this ansatz in theory scales linearly when all nuclei in a system are computed, it is inefficient due to the dependence of the rate-determining steps on the nuclear magnetic moments. This thesis therefore presents a new all-nuclei ansatz and introduces the methodology for the efficient computation of the energy gradients developed in this thesis, highlighting significant computational savings

    The magnetic genome of two-dimensional van der Waals materials

    Get PDF
    Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research

    Magnetic Nanomaterials

    Get PDF
    The constant search for innovative magnetic materials increasingly leads to the creation of highly engineered systems built in different forms (films, wires, particles), structured on the nanoscale in at least one spatial direction, and often characterized by the coexistence of two or more phases that are magnetically and/or structurally different. In magnetic systems, the nanometric structural characteristics of the constituent elements, together with the type and strength of the magnetic interactions between them, determine the overall magnetic behavior and can lead to the appearance of unexpected and amazing magnetic phenomena. Indeed, the study of the magnetic properties of nanomaterials continues to arouse great interest for their intriguing fundamental properties and prospective technological applications. This Special Issue contributes to broadening the knowledge on magnetic nanomaterials, demonstrating the breadth and richness of this research field as well as the growing need to address it through an interdisciplinary approach. The papers collected in this book (two reviews and eight regular articles) report cutting-edge studies on the production and characterization of a variety of novel magnetic nanomaterials (nanoparticles, nanocomposites, thin films and multilayers), which have the potential to play a key role in different technologically advanced sectors, such as biotechnology, nanomedicine, energy, spintronics, data storage, and sensors
    corecore