13,728 research outputs found

    Variance-constrained dissipative observer-based control for a class of nonlinear stochastic systems with degraded measurements

    Get PDF
    The official published version of the article can be obtained from the link below.This paper is concerned with the variance-constrained dissipative control problem for a class of stochastic nonlinear systems with multiple degraded measurements, where the degraded probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution over a given interval. The purpose of the problem is to design an observer-based controller such that, for all possible degraded measurements, the closed-loop system is exponentially mean-square stable and strictly dissipative, while the individual steady-state variance is not more than the pre-specified upper bound constraints. A general framework is established so that the required exponential mean-square stability, dissipativity as well as the variance constraints can be easily enforced. A sufficient condition is given for the solvability of the addressed multiobjective control problem, and the desired observer and controller gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programming method. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed algorithm.This work was supported in part by the Distinguished Visiting Fellowship of the Royal Academy of Engineering of the UK, the Royal Society of the UK, the GRF HKU 7137/09E, the National Natural Science Foundation of China under Grant 61028008, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    Finding a point in the relative interior of a polyhedron

    Get PDF
    A new initialization or `Phase I' strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points - an all-pervasive assumption in interior point method theory that implies the existence of the central path - our initial method (Algorithm 1) is globally Q-linearly and asymptotically Q-quadratically convergent, with a provable worst-case iteration complexity bound. When this assumption is not met, the numerical behaviour of Algorithm 1 is highly disappointing, even when the problem is primal-dual feasible. This is due to the presence of implicit equalities, inequality constraints that hold as equalities at all the feasible points. Controlled perturbations of the inequality constraints of the primal-dual problems are introduced - geometrically equivalent to enlarging the primal-dual feasible region and then systematically contracting it back to its initial shape - in order for the perturbed problems to satisfy the assumption. Thus Algorithm 1 can successfully be employed to solve each of the perturbed problems.\ud We show that, when there exist primal-dual strictly feasible points of the original problems, the resulting method, Algorithm 2, finds such a point in a finite number of changes to the perturbation parameters. When implicit equalities are present, but the original problem and its dual are feasible, Algorithm 2 asymptotically detects all the primal-dual implicit equalities and generates a point in the relative interior of the primal-dual feasible set. Algorithm 2 can also asymptotically detect primal-dual infeasibility. Successful numerical experience with Algorithm 2 on linear programs from NETLIB and CUTEr, both with and without any significant preprocessing of the problems, indicates that Algorithm 2 may be used as an algorithmic preprocessor for removing implicit equalities, with theoretical guarantees of convergence

    Rotor design optimization using a free wake analysis

    Get PDF
    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed
    corecore