6 research outputs found

    Selected Papers from 2020 IEEE International Conference on High Voltage Engineering (ICHVE 2020)

    Get PDF
    The 2020 IEEE International Conference on High Voltage Engineering (ICHVE 2020) was held on 6–10 September 2020 in Beijing, China. The conference was organized by the Tsinghua University, China, and endorsed by the IEEE Dielectrics and Electrical Insulation Society. This conference has attracted a great deal of attention from researchers around the world in the field of high voltage engineering. The forum offered the opportunity to present the latest developments and different emerging challenges in high voltage engineering, including the topics of ultra-high voltage, smart grids, and insulating materials

    Outdoor Insulation and Gas Insulated Switchgears

    Get PDF
    This book focuses on theoretical and practical developments in the performance of high-voltage transmission line against atmospheric pollution and icing. Modifications using suitable fillers are also pinpointed to improve silicone rubber insulation materials. Very fast transient overvoltage (VFTO) mitigation techniques, along with some suggestions for reliable partial discharge measurements under DC voltage stresses inside gas-insulated switchgears, are addressed. The application of an inductor-based filter for the protective performance of surge arresters against indirect lightning strikes is also discussed

    Steering Capacitor Film Development with Methods for Correct and Adequate Dielectric Performance Assessment

    Get PDF
    The transition of electric power systems towards renewable generation has created an increasing market for power electronics using film capacitors as one of their key components. Size, weight, and cost reduction can be achieved with better capacitors – an objective achievable with advanced dielectric films. The current state-of-the-art biaxially oriented polypropylene (BOPP) films are already operated close to their fundamental limits, causing a growing demand for next-generation technologies. To perform well when used in a capacitor, a film needs to have a wide range of fundamental and applied properties, all of which should be evaluated during film development to ensure there are no unwanted trade-offs. Power capacitors are used in applications with high downtime costs, e.g. HVDC, thus especially the reliability aspects must be given scrutiny. This thesis work was inspired by the lack of knowledge of the long-term performance of next generation dielectrics, e.g. polymer nanocomposites. Equally important was to fill the gaps in published knowledge of measurement methods to evaluate long-term properties, voltage endurance, and surprisingly, also the dielectric permittivity of thin (≈10 ÎŒm) low-loss films. In this thesis, a suitable measurement for each three is presented along with examples of their capability and an approach to applying them to steer film development. The large-area multi-breakdown method developed in our research group is extended to measurements at realistic operating temperatures, and industrial BOPP films are shown to exhibit an 11–20 % decrease in the DC breakdown strength between room temperature and 100 ◩C. The results align with literature, which supports the validity of the approach. BOPP films made of base materials varying in terms of molecular weight are measured: these films exhibit similar short-term breakdown performance at room temperature, yet at 100 ◩C differences emerge. The difference did not correlate with the reduction of breakdown performance after DC electro-thermal aging, demonstrating the necessity of long-term tests. Electron beam evaporation in high vacuum (P<10−6 mbar) is established as a repeatable and suitable method to metallize electrodes on ultra low-loss BOPP films, solving earlier issues of abnormally high dielectric losses or unrealistically low real permittivity. Metallization process is identified as the crucial factor: no pre- or post-treatments are required, and valid results are obtainable with various electrode metals. The method was demonstrated by measuring true “literature value” dielectric permittivity of commercial BOPP films: E≈2.25 and tanή≈10−4. The importance of successful metallization process for measuring the intrinsic losses is demonstrated: samples with sputter deposited electrodes exhibited abnormally high dielectric losses, as also did samples metallized using another e-beam evaporator. The multi-breakdown approach is also extended to times-to-breakdown tests, and accelerated ageing tests are conducted on an industrial BOPP film. High-field degradation and drastically reduced insulation life are observed. Analysis of the Weibull failure rate supports the notion that at current design stresses, BOPP is already operated close to the fundamental material limits, and also that the life in operating conditions cannot be determined by simple inverse power law extrapolation of accelerated rapid ageing data. Again, long-term ageing testing is advocated. Space charge measurements on “classic” BOPP films reveal charge accumulation at high fields, as expected. Interestingly, no space charge accumulation is detected in a novel nanostructured material under similar conditions, demonstrating the potentiality of nanofilled DC insulation. A DC electro-thermal ageing test method is presented to investigate long-term phenomena in realistic operating conditions. Two 1000 h DC electro-thermal ageing tests associate ageing with the formation of electrically weak points. Large-area breakdown behavior, being sensitive to local changes, is established as a recommended ageing indicator. Material characterization does not reveal ageing-induced changes in bulk properties, supporting the literature-backed conclusion that early ageing progresses by localized degradation. A trial with eight pilot-scale materials demonstrate that weak point formation may be inhibited in nanostructured materials, but also that material-specific optimization of film processing is required to reach optimal dielectric performance. Ultimately, the methods developed are fused into one resource-efficient approach to capacitor film development, in which the short-, mid-, and long-term properties are evaluated in three overlapping phases. Reliance on individual performance metrics to steer film development is discouraged: all properties need to be at an appropriate level for a film to perform in application, and there are trade-offs to be managed

    DC Line Protection for Multi-Terminal High Voltage DC (HVDC) Transmission Systems

    Get PDF
    The projected global energy shortage and concerns about greenhouse emissions have led to the significant developments in offshore wind farm projects around the globe. It is also envisaged that in the near future, a number of existing onshore converter stations and offshore stations will be interconnected to form a Multi-terminal (MT) HVDC systems, whereas protection issues remains a major challenge. This is largely due to the low inductance in DC network compared to AC interconnection which usually results in a sudden collapse in the DC voltage and rapid rise in the fault current thus reaching damaging levels in few milliseconds. Therefore faults in MT-HVDC system must be detected and cleared quickly before it reaches a damaging level; typically 4 – 6ms (including circuit breaker opening time) following the inception of the fault. For this reason, transient based protection techniques are ideal candidates if the protection scheme must be reliable and dependable. Transient based protection algorithms utilises the higher frequency components of the fault generated signal to detect a fault, therefore making it possible to detect the fault while the fault current is still rising and well before the steady state. The traditional protection algorithms developed for conventional high voltage AC (HVAC) systems such as distance protection are steady state based and as such not suitable for the protection of MT-HVDC systems. Another major issue is selectivity as only the faulty section must be isolated in the event of a fault. This constitutes a major challenge considering the anticipated lengths of the cables. Traditional protection techniques developed for two-terminal HVDC systems are also not suitable for MT-HVDC since it will de-energise the entire network and other sub-grids connected to the main network. DC line protection devices which will operate at a sufficient speed and which will isolate only the faulty section in the event of a fault are therefore required to avoid a total system failure during short circuit. It is anticipated that it will be achieved by the use of HVDC breakers, whereas the implementation and realisation of such circuit breakers still remain a major issue considering speed, complexity, losses and cost. However, two major vendors have proposed prototypes and hopefully these will be commercially available in the near future. The key issue still remains the development of a fast DC line fault detection algorithm; and it is on these premise that this research was undertaken. The work reported in this thesis is a novel time domain protection technique for application to HVDC grids. The protection principle developed utilises the “power” and “energy” accompanying the associated travelling wave following the occurrence of a fault to distinguish between internal and external fault. Generally, either the “power” or “energy” can provide full discrimination between internal and external faults. For an internal fault, the associated forward and backward travelling wave power; or the forward and backward wave energy must exceed a pre-determined setting otherwise the fault is regarded as external. This characteristic differences is largely due to the DC inductor located at the boundaries which provides attenuation for the high frequency transient resulting from an external fault, hence making the power and energy for an internal fault to be significantly larger than that for external fault. The ratio between the forward and backward travelling wave power; or between the forward and backward travelling wave energy provides directional discrimination. For a forward directional fault (FDF) with respect to a local relay, this ratio must be less than unity. However, the ratio is greater than unity for reverse directional faults (RDF). The resulting wave shape of the “travelling wave power” (TWP) components also led to the formulation of a novel protection algorithm utilising the wave shape concavity. For an internal fault, the second derivative of the resulting polynomial formed by the TWP must be negative, thereby indicating a “concave-upwards” parabola. However, for an external fault, the second derivative of the resulting polynomial formed by the TWP components must be positive indicating a “concave-downwards” parabola. The developed and proposed protection techniques and principles were validated against a full scale Modular Multi-level Converter (MMC) – based HVDC grid, and thereafter the protection algorithm was implemented in MATLAB. Wider cases of fault scenarios were considered including long distance remote internal fault and a 500Ω high resistance remote internal fault. In all cases, both the pole-pole (P-P) and pole-ground (P-G) faults were investigated. The simulation results presented shows the suitability of the protection technique as the discrimination between internal and external faults was made within 1ms following the application of the fault. Following this, the protection algorithm was implemented on both a low-cost experimental platform utilising an Arduino UNO ATmega328 Microcontroller and on a Compact RIO FPGA-based experimental platform utilising LAB-View. The experimental results obtained were consistent with those obtained by simulations. An advantage of the proposed technique is that it is non-unit based and as such no communication delays are incurred. Furthermore, as it is time domain - based, it does not require complex mathematical computation and burden / DSP techniques; hence can easily be implemented since it will require less hardware resources which ultimately will result in minimal cost

    Power control, fault analysis and protection of series connected diode rectifier and VSC based MTDC topology for offshore application.

    Get PDF
    A multiterminal high-voltage dc (MTDC) system is a promising method for transmitting energy generated from an offshore windfarm (OWF). The creation of MTDC systems became easier by the introduction of voltage source converter (VSC) due to the flexibility and controllability it provides. This technology is newer than the line-commutated converter technology (LCC). Power systems can include any number of windfarms together with converters for both offshore and onshore power conversion. Therefore, this thesis suggests a three-terminal MTDC model of two offshore windfarms and one onshore inverter. The electric energy generated by the two windfarms is rectified into dc and transmitted to the shore using dc cable. Although a VSC or a diode rectifier (DR) can convert ac to dc, a series connection of a VSC and two DRs was proposed at the windfarm side to convert the generated power to achieve controllability of the uncontrollable diode rectifiers and reduces the high cost of badditional VSCs. The proposed topology converts the ac power by dividing the windfarm power so that one-third is the share of the VSC and two-thirds is the share of the DRs. The same topology is used to convert the power produced from the other windfarm. Then, the dc power is transmitted via an undersea dc cable to the onshore location, and is then inverted into ac before it is supplied to the neighbouring ac grid using a grid-side VSC. The proposed topology has many advantages, including a significant save in windfarm VSC (WFVSC) capital cost and a significant reduction in the loss of power of the converter without losing the overall controllability. However, although this topology is suitable for windfarm applications, it might not be suitable for high-voltage direct current (HVDC) that requires bidirectional power flow unless making changes to the topology such as disconnecting the diode rectifiers. Furthermore, fault analyses were investigated, including dc faults and ac faults. Ac faults are categorised as symmetrical or unsymmetrical faults. For comparison purposes, a Simulink model was designed, implemented, and simulated as a reference model. The reference model can operate as VSC-, DR-based MTDC, or a mix of both in a way that any component can be added to or removed from the model at any time during the simulation run. The contribution to the dc fault current from various parts such as dc capacitor and the adjacent feeder was investigated thoroughly, and detailed mathematical formulae were developed to compute fault current from these contributors. In addition, the results of the system response due to both fault types are illustrated and discussed. Both symmetrical and unsymmetrical ac faults were initiated on the onshore grid side, and the system response results are presented for those faults. A generalised control scheme (GCS) was proposed in this thesis, which add the ability the model to control the reactive power and is suitable for both balanced and unbalanced ac faults conditions. A protection against faults was investigated and implemented using dc circuit breakers. The protection system was built to ensure safe operation and to fulfil the grid code requirements. Many grid codes are available and presented in the literature, such as Spanish, British, and Danish; however, a grid code by E.ON was chosen. The protection scheme in VSC-based MTDC networks plays a vital role during dc faults. It is vital that this protection be sensitive, selective, fast, and reliable. Specifically, it must isolate the fault reliably from the system within a short time after the fault occurrence, while maintaining the remaining components of the system in a secure operational condition. For optimal performance, the protection scheme discussed in this thesis employs solid-state circuit breakers. A literature survey relevant to the tasks mentioned above was conducted.PhD in Energy and Powe
    corecore