194 research outputs found

    Adaptive Beamforming and Adaptive Modulation-Assisted Network Performance of Multiuser Detection-Aided FDD and TDD CDMA Systems

    No full text
    The network performance of a frequency division duplex and time division duplex (TDD) code division multiple access (CDMA)-based system is investigated using system parameters similar to those of the Universal Mobile Telecommunication System. The new call blocking and call dropping probabilities, the probability of low-quality access, and the required average transmit power are quantified both with and without adaptive antenna arrays (AAAs), as well as when subjected to shadow fading. In some of the scenarios investigated, the system’s user capacity is doubled with the advent of adaptive antennas. The employment of adaptive modulation techniques in conjunction with AAAs resulted in further significant network capacity gains. This is particularly so in the context of TDD CDMA, where the system’s capacity becomes poor without adaptive antennas and adaptive modulation owing to the high base station (BS) to BS interference inflicted as a consequence of potentially using all time slots in both the uplink and downlink of the emerging wireless Internet. Index Terms—Adaptive beamforming, adaptive modulation, code division multiple access (CDMA) systems, Universal Mobile Telecommunication System Terrestrial Radio Access (UTRA), wireless network performance

    Congestion probabilities in CDMA-based networks supporting batched Poisson traffic

    Get PDF
    We propose a new multirate teletraffic loss model for the calculation of time and call congestion probabilities in CDMA-based networks that accommodate calls of different serviceclasses whose arrival follows a batched Poisson process. The latter is more "peaked" and "bursty" than the ordinary Poisson process. The acceptance of calls in the system is based on the partial batch blocking discipline. This policy accepts a part of the batch (one or more calls) and discards the rest if the available resources are not enough to accept the whole batch. The proposed model takes into account the multiple access interference, the notion of local (soft) blocking, user’s activity and the interference cancellation. Although the analysis of the model does not lead to a product form solution of the steady state probabilities, we show that the calculation of the call-level performance metrics, time and call congestion probabilities, can be based on approximate but recursive formulas. The accuracy of the proposed formulas are verified through simulation and found to be quite satisfactory

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Performance analysis of CDMA-based networks with interference cancellation, for batched poisson traffic under the Bandwidth Reservation policy

    Get PDF
    CDMA-based technologies deserve assiduous analysis and evaluation. We study the performance, at call-level, of a CDMA cell with interference cancellation capabilities, while assuming that the cell accommodates different service-classes of batched Poisson arriving calls. The partial batch blocking discipline is applied for Call Admission Control (CAC). To guarantee certain Quality of Service (QoS) for each service-class, the Bandwidth Reservation (BR) policy is incorporated in the CAC; i.e., a fraction of system resources is reserved for high-speed service-classes. We propose a new multirate loss model for the calculation of time and call congestion probabilities. The notion of local (soft) and hard blocking, users activity, interference cancellation, as well as the BR policy, are incorporated in the model. Although the steady state probabilities of the system do not have a product form solution, time and call congestion probabilities can be efficiently determined via approximate but recursive formulas. Simulation verified the high accuracy of the new formulas. We also show the consistency of the proposed model in respect of its parameters, while comparison of the proposed model with that of Poisson input shows its necessity

    Performance analysis of the interference adaptation dynamic channel allocation technique in wireless communication networks

    Get PDF
    Dynamic channel allocation (DCA) problem is one of the major research topics in the wireless networking area. The purpose of this technique is to relieve the contradiction between the increasing traffic load in wireless networks and the limited bandwidth resource across the air interface. The challenge of this problem comes from the following facts: a) even the basic DCA problem is shown to be NP-complete (none polynomial complete); b) the size of the state space of the problem is very large; and c) any practical DCA algorithm should run in real-time. Many heuristic DCA schemes have been proposed in the literature. It has been shown through simulation results that the interference adaptive dynamic channel allocation (IA-DCA) scheme is a promising strategy in Time Devision [sic] Multiple Accesss/Frequency Devision [sic] Multiple Accesss [sic] (TDMA/FDMA) based wireless communication systems. However, the analytical work on the IA-DCA strategy in the literature is nearly blank. The performance of a, DCA algorithm in TDMA/FDMA wireless systems is influenced by three factors: representation of the interference, traffic fluctuation, and the processing power of the algorithm. The major obstacle in analyzing IA-DCA is the computation of co-channel interference without the constraint of conventional channel reuse factors. To overcome this difficulty, one needs a representation pattern which can approximate the real interference distribution as accurately as desired, and is also computationally viable. For this purpose, a concept called channel reuse zone (CRZ) is introduced and the methodology of computing the area of a CRZ with an arbitrary, non-trivial channel reuse factor is defined. Based on this new concept, the computation of both downlink and uplink CO-channel interference is investigated with two different propagation models, namely a simplified deterministic model and a shadowing model. For the factor of the processing power, we proposed an idealized Interference Adaptation Maximum Packing (IAMP) scheme, which gives the upper bound of all IA-DCA schemes in terms of the system capacity. The effect of traffic dynamics is delt [sic] with in two steps. First, an asymptotic performance bound for the IA-DCA strategy is derived with the assumption of an arbitrarily large number of channels in the system. Then the performance bound for real wireless systems with the IA-DCA strategy is derived by alleviating this assumption. Our analytical result is compared with the performance bound drawn by Zander and Eriksson for reuse-partitioning DCA1 and some simulation results for IA-DCA in the literature. It turns out that the performance bound obtained in this work is much tighter than Zander and Eriksson\u27s bound and is in agreement with simulation results. 1only available for deterministic propagation model and downlink connection

    Novel heuristics for cell radius determination in WCDMA systems and their application to strategic planning studies

    Get PDF
    We propose and compare three novel heuristics for the calculation of the optimal cell radius in mobile networks based on Wideband Code Division Multiple Access (WCDMA) technology. The proposed heuristics solve the problem of the load assignment and cellular radius calculation. We have tested our approaches with experiments in multiservices scenarios showing that the proposed heuristics maximize the cell radius, providing the optimum load factor assignment. The main application of these algorithms is strategic planning studies, where an estimation of the number of Nodes B of the mobile operator, at a national level, is required for economic analysis. In this case due to the large number of different scenarios considered (cities, towns, and open areas) other methods than simulation need to be considered. As far as we know, there is no other similar method in the literature and therefore these heuristics may represent a novelty in strategic network planning studies. The proposed heuristics are implemented in a strategic planning software tool and an example of their application for a case in Spain is presented. The proposed heuristics are used for telecommunications regulatory studies in several countries

    Quality of Service Differentiation in Heterogeneous CDMA Networks : A Mathematical Modelling Approach

    Get PDF
    Next-generation cellular networks are expected to enable the coexistence of macro and small cells, and to support differentiated quality-of-service (QoS) of mobile applications. Under such conditions in the cell, due to a wide range of supported services and high dependencies on efficient vertical and horizontal handovers, appropriate management of handover traffic is very crucial. Furthermore, new emerging technologies, such as cloud radio access networks (C-RAN) and self-organizing networks (SON), provide good implementation and deployment opportunities for novel functions and services. We design a multi-threshold teletraffic model for heterogeneous code division multiple access (CDMA) networks that enable QoS differentiation of handover traffic when elastic and adaptive services are present. Facilitated by this model, it is possible to calculate important performance metrics for handover and new calls, such as call blocking probabilities, throughput, and radio resource utilization. This can be achieved by modelling the cellular CDMA system as a continuous-time Markov chain. After that, the determination of state probabilities in the cellular system can be performed via a recursive and efficient formula. We present the applicability framework for our proposed approach, that takes into account advances in C-RAN and SON technologies. We also evaluate the accuracy of our model using simulations and find it very satisfactory. Furthermore, experiments on commodity hardware show algorithm running times in the order of few hundreds of milliseconds, which makes it highly applicable for accurate cellular network dimensioning and radio resource management
    • 

    corecore