2,822 research outputs found

    Technical Evaluation: VIRCON Task 12 Report

    Get PDF

    The Integration of Architectural Design and Energy Modelling Software

    Get PDF
    Intelligent and integrated architectural design can substantially reduce carbon dioxide emissions from energy used in buildings. However, architects need new tools to help them to design enjoyable, comfortable, attractive and yet technically rigorous, low energy buildings. This thesis investigates, by means of a Research Through Design approach, how architectural software could be better designed to fulfil this need by the integration of design, energy simulation and decision support systems. The problem domain of the design of buildings with very low energy requirements was analysed. Two case studies were employed to investigate the limitations with current software. User and domain software requirements were recorded and analysed. Conflicting requirements were noted, in particular, dichotomous views of the building model. An investigation was carried out into the different interoperable standards that result in these views and rules on how to compose the building model as a series of Intelligent Spaces proposed. The Intelligent Spaces would be abstract volumes, enclosed by zero thickness surfaces, which have data and rules attached. Early prototyping of integrated software was carried out by means of a series of sketches and diagrammatic examples. The novel feature of the proposal is that it maintains both an abstract and detailed version of the building model through all stages of the building design and use. Key features of the proposed software are: 1) the ability to move iteratively between sketch to detailed design to explore different approaches to the building form and construction, 2) the setting and monitoring of relevant energy targets throughout the different building design stages and 3) the integration of an advisory system linked to energy targets to support decision making. This space based approach to the software has the potential to provide a ‘designerly’ front to the sophisticated processes of a Building Information Modelling environment

    Building Information Modelling (BIM) aided waste minimisation framework

    Get PDF
    Building design can have a major impact on sustainability through material efficiency and construction waste minimisation (CWM). The construction industry consumes over 420 million tonnes of material resources every year and generates 120 million tonnes of waste containing approximately 13 million tonnes of unused materials. The current and on-going field of CWM research is focused on separate project stages with an overwhelming endeavour to manage on-site waste. Although design stages are vital to achieve progress towards CWM, currently, there are insufficient tools for CWM. In recent years, Building Information Modelling (BIM) has been adopted to improve sustainable building design, such as energy efficiency and carbon reduction. Very little has been achieved in this field of research to evaluate the use of BIM to aid CWM during design. However, recent literature emphasises a need to carry out further research in this context. This research aims to investigate the use of BIM as a platform to help with CWM during design stages by developing and validating a BIM-aided CWM (BaW) Framework. A mixed research method, known as triangulation, was adopted as the research design method. Research data was collected through a set of data collection methods, i.e. selfadministered postal questionnaire (N=100 distributed, n=50 completed), and semistructured follow-up interviews (n=11) with architects from the top 100 UK architectural companies. Descriptive statistics and constant comparative methods were used for data analysis. The BaW Framework was developed based on the findings of literature review, questionnaire survey and interviews. The BaW Framework validation process included a validation questionnaire (N=6) and validation interviews (N=6) with architects. Key research findings revealed that: BIM has the potential to aid CWM during design; Concept and Design Development stages have major potential in helping waste reduction through BIM; BIM-enhanced practices (i.e. clash detection, detailing, visualisation and simulation, and improved communication and collaboration) have impacts on waste reduction; BIM has the most potential to address waste causes (e.g. ineffective coordination and communication, and design changes); and the BaW Framework has the potential to enable improvements towards waste minimisation throughout all design stages. Participating architects recommended that the adoption of the BaW Framework could enrich both CWM and BIM practices, and most importantly, would enhance waste reduction performance in design. The content should be suitable for project stakeholders, architects in particular, when dealing with construction waste and BIM during design

    A feasible route for the design and manufacture of customised respiratory protection through digital facial capture

    Get PDF
    The World Health Organisation has called for a 40% increase in personal protective equipment manufacturing worldwide, recognising that frontline workers need effective protection during the COVID-19 pandemic. Current devices suffer from high fit-failure rates leaving significant proportions of users exposed to risk of viral infection. Driven by non-contact, portable, and widely available 3D scanning technologies, a workflow is presented whereby a user’s face is rapidly categorised using relevant facial parameters. Device design is then directed down either a semi-customised or fully-customised route. Semi-customised designs use the extracted eye-to-chin distance to categorise users in to pre-determined size brackets established via a cohort of 200 participants encompassing 87.5% of the cohort. The user’s nasal profile is approximated to a Gaussian curve to further refine the selection in to one of three subsets. Flexible silicone provides the facial interface accommodating minor mismatches between true nasal profile and the approximation, maintaining a good seal in this challenging region. Critically, users with outlying facial parameters are flagged for the fully-customised route whereby the silicone interface is mapped to 3D scan data. These two approaches allow for large scale manufacture of a limited number of design variations, currently nine through the semi-customised approach, whilst ensuring effective device fit. Furthermore, labour-intensive fully-customised designs are targeted as those users who will most greatly benefit. By encompassing both approaches, the presented workflow balances manufacturing scale-up feasibility with the diverse range of users to provide well-fitting devices as widely as possible. Novel flow visualisation on a model face is presented alongside qualitative fit-testing of prototype devices to support the workflow methodology

    3D representation and characterisation of IC topography

    Get PDF

    Three dimensional simulation of cloth drape

    Get PDF
    Research has been carried out in the study of cloth modelling over many decades. The more recent arrival of computers however has meant that the necessary complex calculations can be performed quicker and that visual display of the results is more realistic than for the earlier models. Today's textile and garment designers are happy to use the latest two dimensional design and display technology to create designs and experiment with patterns and colours. The computer is seen as an additional tool that performs some of the more tedious jobs such as re-drawing, re-colouring and pattern sizing. Designers have the ability and experience to visualise their ideas without the need for photo reality. However the real garment must be created when promoting these ideas to potential customers. Three dimensional computer visualisation of a garment can remove the need to create the garment until after the customer has placed an order. As well as reducing costs in the fashion industry, realistic three dimensional cloth animation has benefits for the computer games and film industries. This thesis describes the development of a realistic cloth drape model. The system uses the Finite Element Method for the draping equations and graphics routines to enhance the visual display. During the research the problem of collision detection and response involving dynamic models has been tackled and a unique collision detection method has been developed. This method has proved very accurate in the simulation of cloth drape over a body model and is also described in the thesis. Three dimensional design and display are seen as the next logical steps to current two dimensional practices in the textiles industry. This thesis outlines current and previous cloth modelling studies carried out by other research groups. It goes on to provide a full description of the drape method that has been developed during this research period
    • …
    corecore