825 research outputs found

    Terrain Referenced Navigation Using SIFT Features in LiDAR Range-Based Data

    Get PDF
    The use of GNSS in aiding navigation has become widespread in aircraft. The long term accuracy of INS are enhanced by frequent updates of the highly precise position estimations GNSS provide. Unfortunately, operational environments exist where constant signal or the requisite number of satellites are unavailable, significantly degraded, or intentionally denied. This thesis describes a novel algorithm that uses scanning LiDAR range data, computer vision features, and a reference database to generate aircraft position estimations to update drifting INS estimates. The algorithm uses a single calibrated scanning LiDAR to sample the range and angle to the ground as an aircraft flies, forming a point cloud. The point cloud is orthorectified into a coordinate system common to a previously recorded reference of the flyover region. The point cloud is then interpolated into a Digital Elevation Model (DEM) of the ground. Range-based SIFT features are then extracted from both the airborne and reference DEMs. Features common to both the collected and reference range images are selected using a SIFT descriptor search. Geometrically inconsistent features are filtered out using RANSAC outlier removal, and surviving features are projected back to their source coordinates in the original point cloud. The point cloud features are used to calculate a least squares correspondence transform that aligns the collected features to the reference features. Applying the correspondence that best aligns the ground features is then applied to the nominal aircraft position, creating a new position estimate. The algorithm was tested on legacy flight data and typically produces position estimates within 10 meters of truth using threshold conditions

    Advances towards behaviour-based indoor robotic exploration

    Get PDF
    215 p.The main contributions of this research work remain in object recognition by computer vision, by one side, and in robot localisation and mapping by the other. The first contribution area of the research address object recognition in mobile robots. In this area, door handle recognition is of great importance, as it help the robot to identify doors in places where the camera is not able to view the whole door. In this research, a new two step algorithm is presented based on feature extraction that aimed at improving the extracted features to reduce the superfluous keypoints to be compared at the same time that it increased its efficiency by improving accuracy and reducing the computational time. Opposite to segmentation based paradigms, the feature extraction based two-step method can easily be generalized to other types of handles or even more, to other type of objects such as road signals. Experiments have shown very good accuracy when tested in real environments with different kind of door handles. With respect to the second contribution, a new technique to construct a topological map during the exploration phase a robot would perform on an unseen office-like environment is presented. Firstly a preliminary approach proposed to merge the Markovian localisation in a distributed system, which requires low storage and computational resources and is adequate to be applied in dynamic environments. In the same area, a second contribution to terrain inspection level behaviour based navigation concerned to the development of an automatic mapping method for acquiring the procedural topological map. The new approach is based on a typicality test called INCA to perform the so called loop-closing action. The method was integrated in a behaviour-based control architecture and tested in both, simulated and real robot/environment system. The developed system proved to be useful also for localisation purpose

    Multi-robot exploration of unknown environments with identification of exploration completion and post-exploration rendez-vous using ant algorithms

    Get PDF
    International audienceThis paper presents a new ant algorithm for the navigation of several robots, whose objective is to autonomously explore an unknown environment. When the coverage is com- pleted, all robots move to a previously defined meeting point. The approach that we propose in this paper for solving this problem, considers that the robots build, while moving, a common and shared representation of the environment. In this representation, the environment is viewed as a graph (typically a set of connected cells in a regular grid), each grid cell having a local memory able to store a limited amount of data. A robot can write numbers on the cell on which it is lying. It can also read the values of the cells in its neighborhood, and perform some simple operations, such as computing the minimum of a set of values. Each robot is capable, contrary to most ant- based approaches, to determine, in a distributed way, when the environment coverage has completed. Few ant algorithms can do that. Brick&Mortar is one of them and this is why it retains a central place in our proposition. The novelty of our approach is that, due to an emerging property of the underlying algorithm, agents will finish their exploration at a pre-defined evacuation point. In addition, several improvements of the original Brick&Mortar algorithm are proposed in this paper, such as the possibility to use better local strategies at the robot level (using, for example, LRTA*). The paper also presents a set of benchmarks against the best existing ant algorithms on several widespread graph topologies

    An Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data

    Get PDF
    In this thesis, we introduce a novel architecture called Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data (iARTEC ) . The proposed architecture integrates different terrain characterization and classification with other robotic system components. Within iARTEC , we consider the problem of having a legged robot autonomously learn to identify different terrains. Robust terrain identification can be used to enhance the capabilities of legged robot systems, both in terms of locomotion and navigation. For example, a robot that has learned to differentiate sand from gravel can autonomously modify (or even select a different) path in favor of traversing over a better terrain. The same knowledge of the terrain type can also be used to guide a robot in order to avoid specific terrains. To tackle this problem, we developed four approaches for terrain characterization, classification, path planning, and control for a mobile legged robot. We developed a particle system inspired approach to estimate the robot footâ ground contact interaction forces. The approach is derived from the well known Bekkerâ s theory to estimate the contact forces based on its point contact model concepts. It is realistically model real-time 3-dimensional contact behaviors between rigid body objects and the soil. For a real-time capable implementation of this approach, its reformulated to use a lookup table generated from simple contact experiments of the robot foot with the terrain. Also, we introduced a short-range terrain classifier using the robot embodied data. The classifier is based on a supervised machine learning approach to optimize the classifier parameters and terrain it using proprioceptive sensor measurements. The learning framework preprocesses sensor data through channel reduction and filtering such that the classifier is trained on the feature vectors that are closely associated with terrain class. For the long-range terrain type prediction using the robot exteroceptive data, we present an online visual terrain classification system. It uses only a monocular camera with a feature-based terrain classification algorithm which is robust to changes in illumination and view points. For this algorithm, we extract local features of terrains using Speed Up Robust Feature (SURF). We encode the features using the Bag of Words (BoW) technique, and then classify the words using Support Vector Machines (SVMs). In addition, we described a terrain dependent navigation and path planning approach that is based on E* planer and employs a proposed metric that specifies the navigation costs associated terrain types. This generated path naturally avoids obstacles and favors terrains with lower values of the metric. At the low level, a proportional input-scaling controller is designed and implemented to autonomously steer the robot to follow the desired path in a stable manner. iARTEC performance was tested and validated experimentally using several different sensing modalities (proprioceptive and exteroceptive) and on the six legged robotic platform CREX. The results show that the proposed architecture integrating the aforementioned approaches with the robotic system allowed the robot to learn both robot-terrain interaction and remote terrain perception models, as well as the relations linking those models. This learning mechanism is performed according to the robot own embodied data. Based on the knowledge available, the approach makes use of the detected remote terrain classes to predict the most probable navigation behavior. With the assigned metric, the performance of the robot on a given terrain is predicted. This allows the navigation of the robot to be influenced by the learned models. Finally, we believe that iARTEC and the methods proposed in this thesis can likely also be implemented on other robot types (such as wheeled robots), although we did not test this option in our work

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    How do ICP variants perform when used for scan matching terrain point clouds?

    Get PDF
    Many variants of the Iterative Closest Point (ICP) algorithm have been proposed for registering point clouds. This paper explores the performance of 20,736 ICP variants applied to the registration of point clouds for the purpose of terrain mapping, using data obtained from a mobile platform. The methodology of the study has involved taking sequences of 100 consecutive scans at three distinct scenes along the route of a mining haul truck operating in a typical surface mining environment. The scan sequences were obtained at 20 Hz from a Velodyne HDL-64E mounted on the truck. The aim is to understand how well the ICP variants perform in consolidating these scans into sub-maps. Variants are compared against three metrics: accuracy, precision, and relative computational cost. The main finding of the paper is that none of the variants is simultaneously accurate, precise, and fast to compute, across all three scenes. The best performing variants employed strategies that filtered the data sets, used local surface geometry in the form normals, and used the distance between points in one point cloud to a corresponding surface from a reference point cloud as a measure of the fit between two point clouds. The significance of this work is that it: (i) provides guidance in the construction of ICP variants for terrain mapping; and (ii) identifies the significant limitations of existing ICP variants for this application

    Semantic Localization and Mapping in Robot Vision

    Get PDF
    Integration of human semantics plays an increasing role in robotics tasks such as mapping, localization and detection. Increased use of semantics serves multiple purposes, including giving computers the ability to process and present data containing human meaningful concepts, allowing computers to employ human reasoning to accomplish tasks. This dissertation presents three solutions which incorporate semantics onto visual data in order to address these problems. First, on the problem of constructing topological maps from sequence of images. The proposed solution includes a novel image similarity score which uses dynamic programming to match images using both appearance and relative positions of local features simultaneously. An MRF is constructed to model the probability of loop-closures and a locally optimal labeling is found using Loopy-BP. The recovered loop closures are then used to generate a topological map. Results are presented on four urban sequences and one indoor sequence. The second system uses video and annotated maps to solve localization. Data association is achieved through detection of object classes, annotated in prior maps, rather than through detection of visual features. To avoid the caveats of object recognition, a new representation of query images is introduced consisting of a vector of detection scores for each object class. Using soft object detections, hypotheses about pose are refined through particle filtering. Experiments include both small office spaces, and a large open urban rail station with semantically ambiguous places. This approach showcases a representation that is both robust and can exploit the plethora of existing prior maps for GPS-denied environments while avoiding the data association problems encountered when matching point clouds or visual features. Finally, a purely vision-based approach for constructing semantic maps given camera pose and simple object exemplar images. Object response heatmaps are combined with known pose to back-project detection information onto the world. These update the world model, integrating information over time as the camera moves. The approach avoids making hard decisions on object recognition, and aggregates evidence about objects in the world coordinate system. These solutions simultaneously showcase the contribution of semantics in robotics and provide state of the art solutions to these fundamental problems

    Model-Based Environmental Visual Perception for Humanoid Robots

    Get PDF
    The visual perception of a robot should answer two fundamental questions: What? and Where? In order to properly and efficiently reply to these questions, it is essential to establish a bidirectional coupling between the external stimuli and the internal representations. This coupling links the physical world with the inner abstraction models by sensor transformation, recognition, matching and optimization algorithms. The objective of this PhD is to establish this sensor-model coupling

    Airborne laser sensors and integrated systems

    Get PDF
    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the development of such requirements, useful guidelines are provided for test and evaluation of airborne laser systems including laboratory, ground and flight test activities
    corecore