65,645 research outputs found

    Pseudospectral Calculation of the Wavefunction of Helium and the Negative Hydrogen Ion

    Full text link
    We study the numerical solution of the non-relativistic Schr\"{o}dinger equation for two-electron atoms in ground and excited S-states using pseudospectral (PS) methods of calculation. The calculation achieves convergence rates for the energy, Cauchy error in the wavefunction, and variance in local energy that are exponentially fast for all practical purposes. The method requires three separate subdomains to handle the wavefunction's cusp-like behavior near the two-particle coalescences. The use of three subdomains is essential to maintaining exponential convergence. A comparison of several different treatments of the cusps and the semi-infinite domain suggest that the simplest prescription is sufficient. For many purposes it proves unnecessary to handle the logarithmic behavior near the three-particle coalescence in a special way. The PS method has many virtues: no explicit assumptions need be made about the asymptotic behavior of the wavefunction near cusps or at large distances, the local energy is exactly equal to the calculated global energy at all collocation points, local errors go down everywhere with increasing resolution, the effective basis using Chebyshev polynomials is complete and simple, and the method is easily extensible to other bound states. This study serves as a proof-of-principle of the method for more general two- and possibly three-electron applications.Comment: 23 pages, 20 figures, 2 tables, Final refereed version - Some references added, some stylistic changes, added paragraph to matrix methods section, added last sentence to abstract

    Improving Sensitivity to Weak Pulsations with Photon Probability Weighting

    Full text link
    All gamma-ray telescopes suffer from source confusion due to their inability to focus incident high-energy radiation, and the resulting background contamination can obscure the periodic emission from faint pulsars. In the context of the Fermi Large Area Telescope, we outline enhanced statistical tests for pulsation in which each photon is weighted by its probability to have originated from the candidate pulsar. The probabilities are calculated using the instrument response function and a full spectral model, enabling powerful background rejection. With Monte Carlo methods, we demonstrate that the new tests increase the sensitivity to pulsars by more than 50% under a wide range of conditions. This improvement may appreciably increase the completeness of the sample of radio-loud gamma-ray pulsars. Finally, we derive the asymptotic null distribution for the H-test, expanding its domain of validity to arbitrarily complex light curves.Comment: 10 pages, 11 figures, published by ApJ; v2 fixes an error in Eq.
    • …
    corecore