4,329 research outputs found

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Using haptics as an alternative to visual map interfaces for public transport information systems

    Get PDF
    The use of public transport for daily commutes or for journeys within a new city is something most people rely on. To ensure users actively use public transport services the availability and usability of information relevant to the traveler at any given time is very important. In this paper we describe an interaction model for users of public transport. The interaction model is divided into two main components – the web interaction model and the mobile interaction model. The web interface provides real-time bus information using a website. The mobile interaction model provides similar information to the user through visual user interfaces, gesture based querying, and haptic feedback. Improved access to transit services is very dependent on the effectiveness of communicating information to existing and potential passengers. We discuss the importance and benefits of our multi-modal interaction in public transport systems. The importance of the relatively new mode of haptic feedback is also discussed

    Investigation of Shadow Matching for GNSS Positioning in Urban Canyons

    Get PDF
    All travel behavior of people in urban areas relies on knowing their position. Obtaining position has become increasingly easier thanks to the vast popularity of ‘smart’ mobile devices. The main and most accurate positioning technique used in these devices is global navigation satellite systems (GNSS). However, the poor performance of GNSS user equipment in urban canyons is a well-known problem and it is particularly inaccurate in the cross-street direction. The accuracy in this direction greatly affects many applications, including vehicle lane identification and high-accuracy pedestrian navigation. Shadow matching is a new technique that helps solve this problem by integrating GNSS constellation geometries and information derived from 3D models of buildings. This study brings the shadow matching principle from a simple mathematical model, through experimental proof of concept, system design and demonstration, algorithm redesign, comprehensive experimental tests, real-time demonstration and feasibility assessment, to a workable positioning solution. In this thesis, GNSS performance in urban canyons is numerically evaluated using 3D models. Then, a generic two-phase 6-step shadow matching system is proposed, implemented and tested against both geodetic and smartphone-grade GNSS receivers. A Bayesian technique-based shadow matching is proposed to account for NLOS and diffracted signal reception. A particle filter is designed to enable multi-epoch kinematic positioning. Finally, shadow matching is adapted and implemented as a mobile application (app), with feasibility assessment conducted. Results from the investigation confirm that conventional ranging-based GNSS is not adequate for reliable urban positioning. The designed shadow matching positioning system is demonstrated complementary to conventional GNSS in improving urban positioning accuracy. Each of the three generations of shadow matching algorithm is demonstrated to provide better positioning performance, supported by comprehensive experiments. In summary, shadow matching has been demonstrated to significantly improve urban positioning accuracy; it shows great potential to revolutionize urban positioning from street level to lane level, and possibly meter level

    Calibration and Validation of A Shared space Model: A Case Study

    Get PDF
    Shared space is an innovative streetscape design that seeks minimum separation between vehicle traffic and pedestrians. Urban design is moving toward space sharing as a means of increasing the community texture of street surroundings. Its unique features aim to balance priorities and allow cars and pedestrians to coexist harmoniously without the need to dictate behavior. There is, however, a need for a simulation tool to model future shared space schemes and to help judge whether they might represent suitable alternatives to traditional street layouts. This paper builds on the authors’ previously published work in which a shared space microscopic mixed traffic model based on the social force model (SFM) was presented, calibrated, and evaluated with data from the shared space link typology of New Road in Brighton, United Kingdom. Here, the goal is to explore the transferability of the authors’ model to a similar shared space typology and investigate the effect of flow and ratio of traffic modes. Data recorded from the shared space scheme of Exhibition Road, London, were collected and analyzed. The flow and speed of cars and segregation between pedestrians and cars are greater on Exhibition Road than on New Road. The rule-based SFM for shared space modeling is calibrated and validated with the real data. On the basis of the results, it can be concluded that shared space schemes are context dependent and that factors such as the infrastructural design of the environment and the flow and speed of pedestrians and vehicles affect the willingness to share space

    Modelling shared space users via rule-based social force model

    Get PDF
    The promotion of space sharing in order to raise the quality of community living and safety of street surroundings is increasingly accepted feature of modern urban design. In this context, the development of a shared space simulation tool is essential in helping determine whether particular shared space schemes are suitable alternatives to traditional street layouts. A simulation tool that enables urban designers to visualise pedestrians and cars trajectories, extract flow and density relation in a new shared space design and achieve solutions for optimal design features before implementation. This paper presents a three-layered microscopic mathematical model which is capable of representing the behaviour of pedestrians and vehicles in shared space layouts and it is implemented in a traffic simulation tool. The top layer calculates route maps based on static obstacles in the environment. It plans the shortest path towards agents' respective destinations by generating one or more intermediate targets. In the second layer, the Social Force Model (SFM) is modified and extended for mixed traffic to produce feasible trajectories. Since vehicle movements are not as flexible as pedestrian movements, velocity angle constraints are included for vehicles. The conflicts described in the third layer are resolved by rule-based constraints for shared space users. An optimisation algorithm is applied to determine the interaction parameters of the force-based model for shared space users using empirical data. This new three-layer microscopic model can be used to simulate shared space environments and assess, for example, new street designs
    • …
    corecore