11,527 research outputs found

    YodaNN: An Architecture for Ultra-Low Power Binary-Weight CNN Acceleration

    Get PDF
    Convolutional neural networks (CNNs) have revolutionized the world of computer vision over the last few years, pushing image classification beyond human accuracy. The computational effort of today's CNNs requires power-hungry parallel processors or GP-GPUs. Recent developments in CNN accelerators for system-on-chip integration have reduced energy consumption significantly. Unfortunately, even these highly optimized devices are above the power envelope imposed by mobile and deeply embedded applications and face hard limitations caused by CNN weight I/O and storage. This prevents the adoption of CNNs in future ultra-low power Internet of Things end-nodes for near-sensor analytics. Recent algorithmic and theoretical advancements enable competitive classification accuracy even when limiting CNNs to binary (+1/-1) weights during training. These new findings bring major optimization opportunities in the arithmetic core by removing the need for expensive multiplications, as well as reducing I/O bandwidth and storage. In this work, we present an accelerator optimized for binary-weight CNNs that achieves 1510 GOp/s at 1.2 V on a core area of only 1.33 MGE (Million Gate Equivalent) or 0.19 mm2^2 and with a power dissipation of 895 {\mu}W in UMC 65 nm technology at 0.6 V. Our accelerator significantly outperforms the state-of-the-art in terms of energy and area efficiency achieving 61.2 TOp/s/[email protected] V and 1135 GOp/s/[email protected] V, respectively

    Over speed detection using Artificial Intelligence

    Get PDF
    Over speeding is one of the most common traffic violations. Around 41 million people are issued speeding tickets each year in USA i.e one every second. Existing approaches to detect over- speeding are not scalable and require manual efforts. In this project, by the use of computer vision and artificial intelligence, I have tried to detect over speeding and report the violation to the law enforcement officer. It was observed that when predictions are done using YoloV3, we get the best results
    • …
    corecore