599,413 research outputs found

    Got Calcium?

    Get PDF
    This lithograph answers the question: Where do the elements around us come from? Many are produced in stars, and liberated when these stars explode. It features an attractive image of the remains of an exploded star, taken by NASA's new Chandra X-ray Telescope. The back explains stars' roles as "mighty chemical factories," and contains a classroom activity. Educational levels: High school

    Water calcium concentration modifies whole-body calcium uptake in sea bream larvae during short-term adaptation to altered salinities

    Get PDF
    Whole-body calcium uptake was studied in gilthead sea bream larvae (9–83·mg) in response to changing environmental salinity and [Ca2+]. Calcium uptake increased with increased fish size and salinity. Fish exposed to calcium-enriched, diluted seawater showed increased calcium uptake compared with fish in diluted seawater alone. Calcium uptake was unchanged in Na+- enriched, diluted seawater. Overall, [Ca2+], and not salinity/osmolarity per se, appears to be the main factor contributing to calcium uptake. By contrast, drinking was reduced by a decrease in salinity/osmolarity but was little affected by external [Ca2+]. Calculations of the maximum contribution from drinking-associated calcium uptake showed that it became almost insignificant (less than 10%) through a strong decrease in drinking rate at low salinities (0–8‰). Diluted seawater enriched in calcium to the concentration present in full-strength seawater (i.e. constant calcium, decreasing salinity) restored intestinal calcium uptake to normal. Extra-intestinal calcium uptake also benefited from calcium addition but to a lesser extent

    Caged calcium in Aplysia pacemaker neurons. Characterization of calcium-activated potassium and nonspecific cation currents.

    Get PDF
    We have studied calcium-activated potassium current, IK(Ca), and calcium-activated nonspecific cation current, INS(Ca), in Aplysia bursting pacemaker neurons, using photolysis of a calcium chelator (nitr-5 or nitr-7) to release caged calcium intracellularly. A computer model of nitr photolysis, multiple buffer equilibration, and active calcium extrusion was developed to predict volume-average and front-surface calcium concentration transients. Changes in arsenazo III absorbance were used to measure calcium concentration changes caused by nitr photolysis in microcuvettes. Our model predicted the calcium increments caused by successive flashes, and their dependence on calcium loading, nitr concentration, and light intensity. Flashes also triggered the predicted calcium concentration jumps in neurons filled with nitr-arsenazo III mixtures. In physiological experiments, calcium-activated currents were recorded under voltage clamp in response to flashes of different intensity. Both IK(Ca) and INS(Ca) depended linearly without saturation upon calcium concentration jumps of 0.1-20 microM. Peak membrane currents in neurons exposed to repeated flashes first increased and then declined much like the arsenazo III absorbance changes in vitro, which also indicates a first-order calcium activation. Each flash-evoked current rose rapidly to a peak and decayed to half in 3-12 s. Our model mimicked this behavior when it included diffusion of calcium and nitr perpendicular to the surface of the neuron facing the flashlamp. Na/Ca exchange extruding about 1 pmol of calcium per square centimeter per second per micromolar free calcium appeared to speed the decline of calcium-activated membrane currents. Over a range of different membrane potentials, IK(Ca) and INS(Ca) decayed at similar rates, indicating similar calcium stoichiometries independent of voltage. IK(Ca), but not INS(Ca), relaxes exponentially to a different level when the voltage is suddenly changed. We have estimated voltage-dependent rate constants for a one-step first-order reaction scheme of the activation of IK(Ca) by calcium. After a depolarizing pulse, INS(Ca) decays at a rate that is well predicted by a model of diffusion of calcium away from the inner membrane surface after it has entered the cell, with active extrusion by surface pumps and uptake into organelles. IK(Ca) decays somewhat faster than INS(Ca) after a depolarization, because of its voltage-dependent relaxation combined with the decay of submembrane calcium. The interplay of these two currents accounts for the calcium-dependent outward-inward tail current sequence after a depolarization, and the corresponding afterpotentials after a burs

    GABA\u3csub\u3eB\u3c/sub\u3e Receptors Couple to Gα\u3csub\u3eq\u3c/sub\u3e to Mediate Increases in Voltage-Dependent Calcium Current During Development

    Get PDF
    Metabotropic GABAB receptors are known to modulate the activity of voltage-dependent calcium channels. Previously, we have shown that GABAB receptors couple to a non-Gi/o G-protein to enhance calcium influx through L-type calcium channels by activating protein kinase C in neonatal rat hippocampal neurons. In this study, the components of this signaling pathway were investigated further. Gαq was knocked down using morpholino oligonucleotides prior to examining GABAB-mediated enhancement of calcium influx. When Gαq G-proteins were eliminated using morpholino-mediated knockdown, the enhancing effects of the GABAB receptor agonist baclofen (10 μM) on calcium current or entry were eliminated. These data suggest that GABAB receptors couple to Gαq to regulate calcium influx. Confocal imaging analysis illustrating colocalization of GABAB receptors with Gαq supports this hypothesis. Furthermore, baclofen treatment caused translocation of PKCα (protein kinase C α) but not PKCβ or PKCε, suggesting that it is the α isoform of PKC that mediates calcium current enhancement. Inhibition of calcium/calmodulin-dependent kinase II did not affect the baclofen-mediated enhancement of calcium levels. In summary, activation of GABAB receptors during development leads to increased calcium in a subset of neurons through Gαq signaling and PKCα activation without the involvement of calcium/calmodulin-dependent kinase II

    Active regulation of the epidermal calcium profile

    Get PDF
    A distinct calcium profile is strongly implicated in regulating the multi-layered structure of the epidermis. However, the mechanisms that govern the regulation of this calcium profile are currently unclear. It clearly depends on the relatively impermeable barrier of the stratum corneum (passive regulation) but may also depend on calcium exchanges between keratinocytes and extracellular fluid (active regulation). Using a mathematical model that treats the viable sublayers of unwounded human and murine epidermis as porous media and assumes that their calcium profiles are passively regulated, we demonstrate that these profiles are also actively regulated. To obtain this result, we found that diffusion governs extracellular calcium motion in the viable epidermis and hence intracellular calcium is the main source of the epidermal calcium profile. Then, by comparison with experimental calcium profiles and combination with a hypothesised cell velocity distribution in the viable epidermis, we found that the net influx of calcium ions into keratinocytes from extracellular fluid may be constant and positive throughout the stratum basale and stratum spinosum, and that there is a net outflux of these ions in the stratum granulosum. Hence the calcium exchange between keratinocytes and extracellular fluid differs distinctly between the stratum granulosum and the underlying sublayers, and these differences actively regulate the epidermal calcium profile. Our results also indicate that plasma membrane dysfunction may be an early event during keratinocyte disintegration in the stratum granulosum

    Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements

    Get PDF
    The feasibility of calcium carbonate cements involving the recrystallisation of metastable calcium carbonate varieties has been demonstrated. Calcium carbonate cement compositions presented in this paper can be prepared straightforwardly by simply mixing water (liquid phase) with two calcium carbonate phases (solid phase) which can be easily obtained by precipitation. An original cement composition was obtained by mixing amorphous calcium carbonate and vaterite with an aqueous medium. The cement set and hardened within 2 hours at 37°C in an atmosphere saturated with water and the final composition of the cement consisted mostly of aragonite. The hardened cement was microporous and showed poor mechanical properties. Cytotoxicity tests revealed excellent cytocompatibility of calcium carbonate cement compositions. Calcium carbonates with a higher solubility than the marketed calcium phosphate cements might be of interest to increase biomedical cement resorption rates and to favour its replacement by bone tissue

    Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy

    Get PDF
    Several reports have mentioned the existence of non-apatitic environments of phosphate and carbonate ions in synthetic and biological poorly crystalline apatites. However there were no direct spectroscopic evidences for the existence of non-apatitic environment of calcium ions. Xray Absorption Spectroscopy, at the K-edge of calcium, allows the discrimination between different calcium phosphates of biological interest despite great spectral similarities. A primary analysis of the spectra reveals the existence, in synthetic poorly crystalline apatites, of variable features related to the maturation stage of the sample and corresponding to the existence of nonapatitic environments of calcium ions. Although these features can also be found in several other calcium phosphate salts, and do not allow a clear identification of the ionic environments of calcium ions, they give a possibility to directly determine the maturity of poorly crystalline apatite from calcium X-ray Absorption Near Edge Structure spectra
    corecore