5,002 research outputs found

    Replica theory of the rigidity of structural glasses

    Full text link
    We present a first principle scheme to compute the rigidity, i. e. the shear-modulus of structural glasses at finite temperatures using the cloned liquid theory, which combines the replica theory and the liquid theory. With the aid of the replica method which enables disentanglement of thermal fluctuations in liquids into intra-state and inter-state fluctuations, we extract the rigidity of metastable amorphous solid states in the supercooled liquid and glass phases. The result can be understood intuitively without replicas. As a test case, we apply the scheme to the supercooled and glassy state of a binary mixture of soft-spheres. The result compares well with the shear-modulus obtained by a previous molecular dynamic simulation. The rigidity of metastable states is significantly reduced with respect to the instantaneous rigidity, namely the Born term, due to non-affine responses caused by displacements of particles inside cages at all temperatures down to T=0. It becomes nearly independent of temperature below the Kauzmann temperature T_K. At higher temperatures in the supercooled liquid state, the non-affine correction to the rigidity becomes stronger suggesting melting of the metastable solid state. Inter-state part of the static response implies jerky, intermittent stress-strain curves with static analogue of yielding at mesoscopic scales.Comment: 52 pages, 10 figure

    A geometrical model for Mixed cyanide crystals

    Full text link
    A model of diluted random field sustained by quenched volume deformations is shown to reproduce puzzling physical features found in X(CN)_{x}Y_{1-x} mixed cyanide crystals. X is an alkali metal (K, Na or Rb) and Y is a spherical halogen ion (Br, Cl or I). Critical thresholds x_c at which associated first order ferroelastic transitions disappear are calculated exactly. The diluted random field is shown to compete with compressibility in making the transition first order. Transitions are then found to remain first order down to x_c except in the case of bromine dilution where they become continuous. All the results are in excellent agreement with available experimental data.Comment: 10 pages, late

    Molecular dynamics simulations of glassy polymers

    Full text link
    We review recent results from computer simulation studies of polymer glasses, from chain dynamics around the glass transition temperature Tg to the mechanical behaviour below Tg. These results clearly show that modern computer simulations are able to address and give clear answers to some important issues in the field, in spite of the obvious limitations in terms of length and time scales. In the present review we discuss the cooling rate effects, and dynamic slowing down of different relaxation processes when approaching Tg for both model and chemistry-specific polymer glasses. The impact of geometric confinement on the glass transition is discussed in detail. We also show that computer simulations are very useful tools to study structure and mechanical response of glassy polymers. The influence of large deformations on mechanical behaviour of polymer glasses in general, and strain hardening effect in particular are reviewed. Finally, we suggest some directions for future research, which we believe will be soon within the capabilities of state of the art computer simulations, and correspond to problems of fundamental interest.Comment: To apear in "Soft Matter

    A study of the static yield stress in a binary Lennard-Jones glass

    Full text link
    The stress-strain relations and the yield behavior of model glass (a 80:20 binary Lennard-Jones mixture) is studied by means of MD simulations. First, a thorough analysis of the static yield stress is presented via simulations under imposed stress. Furthermore, using steady shear simulations, the effect of physical aging, shear rate and temperature on the stress-strain relation is investigated. In particular, we find that the stress at the yield point (the ``peak''-value of the stress-strain curve) exhibits a logarithmic dependence both on the imposed shear rate and on the ``age'' of the system in qualitative agreement with experiments on amorphous polymers and on metallic glasses. In addition to the very observation of the yield stress which is an important feature seen in experiments on complex systems like pastes, dense colloidal suspensions and foams, further links between our model and soft glassy materials are found. An example are hysteresis loops in the system response to a varying imposed stress. Finally, we measure the static yield stress for our model and study its dependence on temperature. We find that for temperatures far below the mode coupling critical temperature of the model (Tc=0.435Tc = 0.435), \sigmay decreases slowly upon heating followed by a stronger decrease as \Tc is approached. We discuss the reliability of results on the static yield stress and give a criterion for its validity in terms of the time scales relevant to the problem.Comment: 14 pages, 18 figure

    Origin of the slow dynamics and the aging of a soft glass

    Full text link
    We study by light microscopy a soft glass consisting of a compact arrangement of polydisperse elastic spheres. We show that its slow and non-stationary dynamics results from the unavoidable small fluctuations of temperature, which induce intermittent local mechanical shear in the sample, because of thermal expansion and contraction. Temperature-induced shear provokes both reversible and irreversible rearrangements whose amplitude decreases with time, leading to an exponential slowing down of the dynamics with sample age.Comment: published in PRL 97, 238301, 200

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication
    corecore