5 research outputs found

    Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching

    Full text link
    Caching popular content at the edge of future mobile networks has been widely considered in order to alleviate the impact of the data tsunami on both the access and backhaul networks. A number of interesting techniques have been proposed, including femto-caching and "delayed" or opportunistic cache access. Nevertheless, the majority of these approaches suffer from the rather limited storage capacity of the edge caches, compared to the tremendous and rapidly increasing size of the Internet content catalog. We propose to depart from the assumption of hard cache misses, common in most existing works, and consider "soft" cache misses, where if the original content is not available, an alternative content that is locally cached can be recommended. Given that Internet content consumption is increasingly entertainment-oriented, we believe that a related content could often lead to complete or at least partial user satisfaction, without the need to retrieve the original content over expensive links. In this paper, we formulate the problem of optimal edge caching with soft cache hits, in the context of delayed access, and analyze the expected gains. We then show using synthetic and real datasets of related video contents that promising caching gains could be achieved in practice

    A Markovian model for satellite integrated cognitive and D2D HetNets

    Get PDF
    Next-generation wireless systems are expected to provide bandwidth-hungry services in a cost-efficient and ubiquitous manner. D2D communications, spectrum sharing and heterogeneous network architectures (HetNets) are touted as crucial enablers to attain these goals. Moreover, the shifting characteristics of network traffic towards content consumption necessitate content-centric architectures and protocols. In this work, we propose a comprehensive analytical model for a content-oriented heterogeneous wireless network with cognitive capability. We model our HetNet architecture with a Continuous Time Markov Chain (CTMC) and characterize the trade-off between energy efficiency and system goodput. We elaborate on novel elements in our model, namely the integration of universal source concept (modeling the content retrieval operation from external networks), caching and overlaying in D2D mode. Besides, our investigation on network mode selection provides further insight on how resource allocation and performance are intertwined

    Interference Coordination in Heterogeneous Networks: Stochastic Geometry Based Modelling and Performance Analysis

    Get PDF
    Recently data traffic has experienced explosive increase with the proliferation of wireless devices and the popularity of media-based free services. The academic and industry of mobile communications have predicted an estimated 10001000x increase in traffic volume for the forthcoming 5G networks. This traffic explosion stimulates the deployment of heterogeneous networks (HetNets) with small cells (SCs) underlying in the traditional macrocells, which has been considered as a promising technique to contribute to the 10001000x traffic capacity gain. Initially, licensed spectrum bands are expected to be used in SCs, thus the SC deployment introduces the cross-tier interference between SCs and macrocells, which degrades the downlink signal to interference plus noise ratio (SINR) of user equipments (UEs) severely, especially for the edge UEs in a ultra-densely deployed scenario. To alleviate this cross-tier interference between SCs and macrocells, unlicensed spectrum bands are advocated to be used in SCs. Specifically, with the aid of carrier aggregation, the 55 gigahertz (GHz) unlicensed band has become an option for SCs in the Long Term Evolution (LTE)-Unlicensed (LTE-U) scheme, but the 55 Ghz unlicensed band has already been used by WiFi networks. Thus downlink cross-tier interference also occurs between LTE-U and WiFi networks. Accordingly, downlink cross-tier interference is inevitable no matter licensed or unlicensed spectrum band (i.e., 5 GHz) is used in SCs, and interference coordination schemes, such as further enhanced inter-cell interference coordination (FeICIC) for macrocells and SCs, and Licensed Assisted Access (LAA) for WiFi networks and LTE-U networks, have been proposed to mitigate these cross-tier interferences. In this dissertation, we mainly focus on the modelling and performance analysis of HetNets with the aforementioned two interference coordination schemes (i.e., FeICIC and LTE-LAA) under the stochastic geometry framework. Firstly, as the configuration of reduced power subframe (RPS)-related parameters was not well investigated in a two-tier HetNet adopting RPSs and cell range expansion (CRE), we derive the analytical expressions of the downlink coverage probability and rate coverage probability in such a HetNet. The optimal settings for the area of macrocell center regions, the area of SC range expansion regions, and the transmit power of RPSs for maximizing the rate coverage probability are analysed. As compared with the rate coverage probability in the two-tier HetNet with almost blank subframes (ABSs), which is proposed in the previous version of FeICIC, i.e., the enhanced inter-cell interference coordination (eICIC), the results show that ABSs outperform RPSs in terms of the rate coverage probability in the two-tier HetNet with the optimal range expansion bias, but lead to a heavier burden on the SC backhaul. However, with static typical range expansion biases, RPSs provide better rate coverage probability than ABSs in the two-tier HetNet. Secondly, the conventional FeICIC scheme ignores the potential of RPSs being adopted in both tiers of a two-tier HetNet without CRE, which is envisioned to improve the SINR level of edge UEs in both tiers. Accordingly, we study the downlink coverage probability and rate coverage probability of a two-tier HetNet applying with our proposed scheme. The results reveal that adopting RPSs in both tiers not only improves the coverage probabilities of edge UEs, but also increases the rate coverage probability of the whole two-tier HetNet. Thirdly, in both previous works, strict subframe alignment (SA) was assumed throughout the whole network, which is difficult to maintain between neighbouring cells in reality. Consequently, we propose a novel subframe misalignment (SM) model for a two-tier HetNet adopting RPSs with SM offsets restricted within a subframe duration, and analyse the coverage probability under the effects of RPSs and SM. The numerical results indicate that the strict SA requirement can be relaxed by up to 20%20\% of the subframe duration with a loss of below 5%5\% in terms of the downlink coverage probability. Lastly, since stochastic-geometry-based analysis of the coexisting LTE-LAA and WiFi networks, which adopt the carrier-sense multiple access with collision avoidance (CSMA/CA) as the medium access control (MAC) scheme and share multiple unlicensed channels (UCs), was missing, we analyse the downlink throughput and spectral efficiency (SE) of the coexisting LTE-LAA and WiFi networks versus the network density and the number of UCs based on the Matern hard core process. The throughput and SE are obtained as functions of the downlink successful transmission probability (STP), of which analytical expressions are derived for both LTE-LAA and WiFi UEs. The results show that the throughput and SE of the whole coexisting LTE-LAA and WiFi networks can be improved significantly with an increasing number of accessible UCs. Based on the numerical results, insights into the trade-off between the throughput and SE against the number of accessible UCs are provided. All the derived results have been validated by Monte Carlo simulation in Matlab, and the conclusions observed from the results can provide guidelines for the future deployments of the FeICIC and LTE-LAA interference coordination schemes in HetNets

    Advanced Technologies for Energy Saving, Wireless Backhaul and Mobility Management in Heterogeneous Networks

    Get PDF
    In recent years, due to the increasing number of existing and new devices and applications, the wireless industry has experienced an explosion of data traffic usage. As a result, new wireless technologies have been developed to address the capacity crunch. Long-Term Evolution-Licensed Assisted Access (LTE-LAA) is developed to provide the tremendous capacity by extending LTE to 5 GHz unlicensed spectrum. Hyper-dense small cells deployment is another promising technique that can provide a ten to one hundred times capacity gain by bringing small cells closer to mobile user equipments [1]. In this thesis, I focus on three problems related to these two techniques. In Chapter 3, I present a novel activation and sleep mechanism for energy efficient small cell heterogeneous networks (HetNets). In the cell-edge area of a macrocell, the coverage area of a sleeping small-cell will be covered by a range of expanded small-cells nearby. In contrast, in areas close to the macrocell, user equipment (UE) associated with a sleeping small cell will be distributed to the macrocell. Furthermore, the enhanced inter-cell interference coordination (eICIC) technique is used to support range-expanded small cells to avoid Quality of Service (QoS) degradation. Under both hexagonal and stochastic geometry based models, it is demonstrated that the proposed sleeping mechanism significantly reduces the energy consumption of the network compared with the conventional methods while guaranteeing the QoS requirements. Small cells are currently connected to limited backhaul to reduce the deployment and operational costs. In Chapter 4, an optimisation scheme is proposed for small cells to utilise the bandwidth of macrocells as wireless backhaul. I provide the numerical analysis of the performance of both the targeted small cell and the whole network. In Chapter 5, the mobility management (MM) of heterogeneous and LTE-LAA networks are investigated. To avoid Ping-Pong handover (PPHO) and reduce handover failure rate in HetNets, a self-optimisation algorithm is developed to change the handover parameters of a base station automagically. Furthermore, the MM of LTE-LAA networks is analysed. A new handover mechanism is proposed for LTE-LAA networks. Compared with the conventional LTE networks, LTE-LAA networks trigger the handover not only by using UE mobility, but also by the availability of the unlicensed band. A comprehensive analysis of the handover triggering event and handover procedure is presented. Simulation results show that by introducing handover triggered by available unlicensed band, the ratio of handover to unlicensed spectrum has a significant improvement. Therefore, a noticeable enhanced throughput of UEs is achievable by LTE-LAA networks

    Implementação e avaliação no system generator de um sistema cooperativo para os futuros sistemas 5G

    Get PDF
    With the arrival of 5G it is expected the proliferation of services in the different fields such as healthcare, utility applications, industrial automation, 4K streaming, that the former networks can not provide. Additionally, the total number of wireless communication devices will escalate in such a manner that the already scarce available frequency bandwidth won’t be enough to pack the intended objectives. Cisco’s Annual Internet Report from 2018 predicts that by 2023 there will be nearly 30 billion devices capable of wireless communication. Due to the exponential expiation of both services and devices, the challenges upon both network data capacity and efficient radio resourse use will be greater than ever, thus the urgency for solutions is grand. Both the capacity for wireless communications and spectral efficiency are related to cell size and its users proximity to the access point. Thus, shortening the distance between the transmitter and the receiver improves both aspects of the network. This concept is what motivates the implementation of heterogeneous networks, HetNets, that are composed of many different small-cells, SCs, overlaid across the same coexisting area of a conventional macro-cell, shortening the distance between the cell users and its access point transceivers, granting a better coverage and higher data rates. However, the HetNets potential does not come without any challenges, as these networks suffer considerably from communication interference between cells. Although some interference management algorithms that allow coexistence between cells have been proposed in recent years, most of them were evaluated by software simulations and not implemented in real-time platforms. Therefore, this master thesis aims to give the first step on the implementation and evaluation of an interference mitigation technique in hardware. Specifically, it is assumed a downlink scenario composed by a macro-cell base station, a macro-cell primary user and a small cell user, with the aim of implementing an algorithm that eliminates the downlink interference that the base station may cause to the secondary users. The study was carried out using the System Generator DSP tool, which is a tool that generates code for hardware from schematics created in it. This tool also offers a wide range of blocks that help the creation, and fundamentally, the simulation and study of the system to be implemented, before being translated into hardware. The results obtained in this work are a faithful representation of the behavior of the implemented system, which can be used for a future application for FPGA.Com a chegada do 5G, espera-se a proliferação de serviços nas mais diversas áreas tal como assistência médica, automação industrial, transmissão em 4k, que não eram possíveis nas redes das gerações anteriores. Além deste fenómeno, o número total de dispositivos capazes de conexões wireless aumentará de tal maneira que a escassa largura de banda disponível não será suficiente para abranger os objetivos pretendidos. O Relatório Anual de 2018 sobre a Internet da Cisco prevê que até 2023 haverá quase 30 bilhões de dispositivos capazes de comunicação sem fio. Devido ao aumento exponencial de serviços e dispositivos, os desafios sobre a capacidade de dados da rede e o udo eficiente dos recursos de rádio serão maiores que nunca. Por estes motivos, a necessidade de soluções para estas lacunas é enorme. Tanto a capacidade da rede e o uso eficiente do espectro de frequências estão relacionados ao tamanho da célula e à proximidade dos usuários com o ponto de acesso da célula. Ao encurtar a distância entre o transmissor e o recetor ocorre um melhoramento destes dois aspetos da rede. Este é o principal conceito na implementação de redes heterogéneas, HetNets, que são compostas por diversas células pequenas que coexistem na área de uma macro célula convencional, diminuído a distância entre os utilizadores da célula e os pontos de acesso, garantindo uma melhor cobertura e taxa de dados mais elevadas. No entanto, o potencial das HatNets não vem sem nenhum custo, pois estas redes sofrem consideravelmente de interferência entre as células. Embora nos últimos anos foram propostos alguns algoritmos que permitem a coexistência das células, a maioria destes foi só testado em simulações de software e não em plataformas em tempo real. Por esse motivo, esta dissertação de mestrado visa dar o primeiro passo na implementação e a avaliação de uma técnica de mitigação de interferência em hardware. Mais especificamente no cenário de downlink entre uma estação base de uma macro célula, um utilizador primário da macro célula e um utilizador secundário de uma célula pequena, com o principal objetivo de cancelar a interferência que a estação base possa fazer ao utilizador secundário. O estudo foi realizado utilizando a ferramenta System Generator DSP, que é uma ferramenta que gera código para hardware a partir de esquemáticos criados na mesma. Esta ferramenta também oferece uma vasta gama de blocos que ajudam a criação, e fundamentalmente, a simulação e o estudo do sistema a implementar antes de ser traduzido para hardware. Os resultados obtidos neste trabalho são uma fiel representação do comportamento do sistema implementado. O quais podem ser utilizados para uma futura aplicação para FPGA.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore