2,071 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

    Full text link
    Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology

    EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions [Technical Report]

    Full text link
    We introduce EQUI-VOCAL: a new system that automatically synthesizes queries over videos from limited user interactions. The user only provides a handful of positive and negative examples of what they are looking for. EQUI-VOCAL utilizes these initial examples and additional ones collected through active learning to efficiently synthesize complex user queries. Our approach enables users to find events without database expertise, with limited labeling effort, and without declarative specifications or sketches. Core to EQUI-VOCAL's design is the use of spatio-temporal scene graphs in its data model and query language and a novel query synthesis approach that works on large and noisy video data. Our system outperforms two baseline systems -- in terms of F1 score, synthesis time, and robustness to noise -- and can flexibly synthesize complex queries that the baselines do not support.Comment: This is an extended technical report for the following paper: "Enhao Zhang, Maureen Daum, Dong He, Brandon Haynes, Ranjay Krishna, and Magdalena Balazinska. EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions. PVLDB, 16(11): 2714-2727, 2023. doi:10.14778/3611479.3611482

    Development of an Event Management Web Application For Students: A Focus on Back-end

    Get PDF
    Managing schedules can be challenging for students, with different calendars on various platforms leading to confusion and missed events. To address this problem, this thesis presents the development of an event management website designed to help students stay organized and motivated. With a focus on the application's back-end, this thesis explores the technology stack used to build the website and the implementation details of each chosen technology. By providing a detailed case study of the website development process, this thesis serves as a helpful resource for future developers looking to build their web applications

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Providing Private and Fast Data Access for Cloud Systems

    Get PDF
    Cloud storage and computing systems have become the backbone of many applications such as streaming (Netflix, YouTube), storage (Dropbox, Google Drive), and computing (Amazon Elastic Computing, Microsoft Azure). To address the ever growing demand for storage and computing requirements of these applications, cloud services are typically im-plemented over a large-scale distributed data storage system. Cloud systems are expected to provide the following two pivotal services for the users: 1) private content access and 2) fast content access. The goal of this thesis is to understand and address some of the challenges that need to be overcome to provide these two services. The first part of this thesis focuses on private data access in distributed systems. In particular, we contribute to the areas of Private Information Retrieval (PIR) and Private Computation (PC). In the PIR problem, there is a user who wishes to privately retrieve a subset of files belonging to a database stored on a single or multiple remote server(s). In the PC problem, the user wants to privately compute functions of a subset of files in the database. The PIR and PC problems seek the most efficient solutions with the minimum download cost that enable the user to retrieve or compute what it wants privately. We establish fundamental bounds on the minimum download cost required for guaran-teeing the privacy requirement in some practical and realistic settings of the PIR and PC problems and develop novel and efficient privacy-preserving algorithms for these settings. In particular, we study the single-server and multi-server settings of PIR in which the user initially has a random linear combination of a subset of files in the database as side in-formation, referred to as PIR with coded side information. We also study the multi-server setting of the PC in which the user wants to privately compute multiple linear combinations of a subset of files in the database, referred to as Private Linear Transformation. The second part of this thesis focuses on fast content access in distributed systems. In particular, we study the use of erasure coding to handle data access requests in distributed storage and computing systems. Service rate region is an important performance metric for coded distributed systems, which expresses the set of all data access request rates that can be simultaneously served by the system. In this context, two classes of problems arise: 1) characterizing the service rate region of a given storage scheme and finding the optimal request allocation, and 2) designing the underlying erasure code to handle a given desired service rate region. As contributions along the first class of problems, we characterize the service rate region of systems with some common coding schemes such as Simplex codes and Reed-Muller codes by introducing two novel techniques: 1) fractional matching and vertex cover on graph representation of codes, and 2) geometric representations of codes. Moreover, along the second class of code design, we establish some lower bounds on the minimum storage required to handle a desired service rate region for a coded distributed system and in some regimes, we design efficient storage schemes that provide the desired service rate region while minimizing the storage requirements

    Analýza a klasifikace nabíjecích dat pro mikro sítě

    Get PDF
    This thesis aims to develop a classification model for electric vehicles (EVs) based on data from EV charging stations.The study utilizes a dataset of 6 charging sessions from EV charging station and implements two deep learning algorithm including LSTM and Auto-Encoders to classify EVs. The performance of the classification model is evaluated based on accuracy rates & precision.The study also identifies key charging characteristics that are most significant in distinguishing between different types of EVs, including charging time, energy consumption, and charging patterns.The findings of this research have significant implications for the development of EV charging infras- tructure and services. The classification model developed in this thesis can be used to optimize charging station operations, improve charging services, and develop EV adoption strategies. The study also highlights the importance of utilizing data from EV charging stations in understanding the EV market and improving the efficiency of charging infrastructure.Tato práce si klade za cíl vyvinout model klasifikace elektrických vozidel (EV) založený na datech z nabíjecích stanic pro elektromobily. Studie využívá datovou sadu 6 nabíjecích relací z nabíjecí stanice pro elektromobily a implementuje dva algoritmy hlubokého učení, včetně LSTM a Auto- Encoders pro klasifikaci EV. . Výkon klasifikačního modelu je hodnocen na základě míry přesnosti a preciznosti. Studie také identifikuje klíčové charakteristiky nabíjení, které jsou nejvýznamnější při rozlišování mezi různými typy elektromobilů, včetně doby nabíjení, spotřeby energie a vzorců nabí- jení. Zjištění tohoto výzkumu mají významné důsledky pro rozvoj infrastruktury a služeb nabíjení elektromobilů. Klasifikační model vyvinutý v této práci lze použít k optimalizaci provozu nabíjecích stanic, zlepšení nabíjecích služeb a rozvoji strategií přijetí elektromobilů. Studie také zdůrazňuje důležitost využití dat z nabíjecích stanic pro elektromobily pro pochopení trhu s elektromobily a zlepšení efektivity nabíjecí infrastruktury450 - Katedra kybernetiky a biomedicínského inženýrstvívýborn

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    A Business Intelligence Solution, based on a Big Data Architecture, for processing and analyzing the World Bank data

    Get PDF
    The rapid growth in data volume and complexity has needed the adoption of advanced technologies to extract valuable insights for decision-making. This project aims to address this need by developing a comprehensive framework that combines Big Data processing, analytics, and visualization techniques to enable effective analysis of World Bank data. The problem addressed in this study is the need for a scalable and efficient Business Intelligence solution that can handle the vast amounts of data generated by the World Bank. Therefore, a Big Data architecture is implemented on a real use case for the International Bank of Reconstruction and Development. The findings of this project demonstrate the effectiveness of the proposed solution. Through the integration of Apache Spark and Apache Hive, data is processed using Extract, Transform and Load techniques, allowing for efficient data preparation. The use of Apache Kylin enables the construction of a multidimensional model, facilitating fast and interactive queries on the data. Moreover, data visualization techniques are employed to create intuitive and informative visual representations of the analysed data. The key conclusions drawn from this project highlight the advantages of a Big Data-driven Business Intelligence solution in processing and analysing World Bank data. The implemented framework showcases improved scalability, performance, and flexibility compared to traditional approaches. In conclusion, this bachelor thesis presents a Business Intelligence solution based on a Big Data architecture for processing and analysing the World Bank data. The project findings emphasize the importance of scalable and efficient data processing techniques, multidimensional modelling, and data visualization for deriving valuable insights. The application of these techniques contributes to the field by demonstrating the potential of Big Data Business Intelligence solutions in addressing the challenges associated with large-scale data analysis
    corecore