234 research outputs found

    Split and Migrate: Resource-Driven Placement and Discovery of Microservices at the Edge

    Get PDF
    Microservices architectures combine the use of fine-grained and independently-scalable services with lightweight communication protocols, such as REST calls over HTTP. Microservices bring flexibility to the development and deployment of application back-ends in the cloud. Applications such as collaborative editing tools require frequent interactions between the front-end running on users\u27 machines and a back-end formed of multiple microservices. User-perceived latencies depend on their connection to microservices, but also on the interaction patterns between these services and their databases. Placing services at the edge of the network, closer to the users, is necessary to reduce user-perceived latencies. It is however difficult to decide on the placement of complete stateful microservices at one specific core or edge location without trading between a latency reduction for some users and a latency increase for the others. We present how to dynamically deploy microservices on a combination of core and edge resources to systematically reduce user-perceived latencies. Our approach enables the split of stateful microservices, and the placement of the resulting splits on appropriate core and edge sites. Koala, a decentralized and resource-driven service discovery middleware, enables REST calls to reach and use the appropriate split, with only minimal changes to a legacy microservices application. Locality awareness using network coordinates further enables to automatically migrate services split and follow the location of the users. We confirm the effectiveness of our approach with a full prototype and an application to ShareLatex, a microservices-based collaborative editing application

    Mobile Content Delivery Network Design and Implementation

    Get PDF
    In this thesis, a novel concept of Mobile Content Delivery Network is designed and implemented in a real testbed with the target of flexibly adapting the video caching in the cellular network to the users dynamics. New challenges are discussed and practical considerations for wide-scale deployment in next generation cellular networks are drawn

    Enhancing satellite & terrestrial networks integration through NFV/SDN technologies

    Get PDF
    NFV and SDN technologies can become key facilitators for the combination of terrestrial and satellite networks. Enabling NFV into the SatCom domain will provide operators with appropriate tools and interfaces in order to establish end-to-end fully operable virtualized satellite networks to be offered to third-party operators/service providers. Enabling SDNbased, federated resource management paves way for a unified control plane that would allow operators to efficiently manage and optimize the operation of the hybrid network. The proposed solution is expected to bring improved coverage, optimized communication resources use and better network resilience, along with improved innovation capacity and business agility for deploying communications services over combined networks.Postprint (author's final draft

    Fog Computing with Go: A Comparative Study

    Get PDF
    The Internet of Things is a recent computing paradigm, de- fined by networks of highly connected things – sensors, actuators and smart objects – communicating across networks of homes, buildings, vehicles, and even people. The Internet of Things brings with it a host of new problems, from managing security on constrained devices to processing never before seen amounts of data. While cloud computing might be able to keep up with current data processing and computational demands, it is unclear whether it can be extended to the requirements brought forth by Internet of Things. Fog computing provides an architectural solution to address some of these problems by providing a layer of intermediary nodes within what is called an edge network, separating the local object networks and the Cloud. These edge nodes provide interoperability, real-time interaction, routing, and, if necessary, computational delegation to the Cloud. This paper attempts to evaluate Go, a distributed systems language developed by Google, in the context of requirements set forth by Fog computing. Similar methodologies of previous literature are simulated and benchmarked against in order to assess the viability of Go in the edge nodes of Fog computing architecture

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Detecting Middlebox Interference on Applications

    Get PDF
    PhDMiddleboxes are widely used in today’s Internet, especially for security and performance. Middleboxes classify, filter and shape traffic, therefore interfering with application behaviour and performing new network functions for end hosts. Recent studies have uncovered and studied middleboxes in different types of networks. In order to understand the middlebox interference on traffic flows and explore the involved ASes, our methodology relies on a client-server architecture, to be able to observe both directions of the middlebox interaction. Meanwhile, probing with increasing TTL values provides us chances to inspect behaviour of middleboxes hop by hop. Implementing our methodologies, we exploit a large-scale proxy infrastructure Luminati, to detect HTTP-interacting middleboxes across the Internet. We collect a large-scale dataset from vantage points distributed in nearly 10,000 ASes across 196 countries. Our results provide abundant evidence for middleboxes deployed across more than 1000 ASes. We observe various middlebox interference in both directions of traffic flows, and across a wide range networks, including mobile operators and data center networks
    • …
    corecore