4,286 research outputs found

    Distortion-Memory Tradeoffs in Cache-Aided Wireless Video Delivery

    Full text link
    Mobile network operators are considering caching as one of the strategies to keep up with the increasing demand for high-definition wireless video streaming. By prefetching popular content into memory at wireless access points or end user devices, requests can be served locally, relieving strain on expensive backhaul. In addition, using network coding allows the simultaneous serving of distinct cache misses via common coded multicast transmissions, resulting in significantly larger load reductions compared to those achieved with conventional delivery schemes. However, prior work does not exploit the properties of video and simply treats content as fixed-size files that users would like to fully download. Our work is motivated by the fact that video can be coded in a scalable fashion and that the decoded video quality depends on the number of layers a user is able to receive. Using a Gaussian source model, caching and coded delivery methods are designed to minimize the squared error distortion at end user devices. Our work is general enough to consider heterogeneous cache sizes and video popularity distributions.Comment: To appear in Allerton 2015 Proceedings of the 53rd annual Allerton conference on Communication, control, and computin

    Proactive Caching for Energy-Efficiency in Wireless Networks: A Markov Decision Process Approach

    Full text link
    Content caching in wireless networks provides a substantial opportunity to trade off low cost memory storage with energy consumption, yet finding the optimal causal policy with low computational complexity remains a challenge. This paper models the Joint Pushing and Caching (JPC) problem as a Markov Decision Process (MDP) and provides a solution to determine the optimal randomized policy. A novel approach to decouple the influence from buffer occupancy and user requests is proposed to turn the high-dimensional optimization problem into three low-dimensional ones. Furthermore, a non-iterative algorithm to solve one of the sub-problems is presented, exploiting a structural property we found as \textit{generalized monotonicity}, and hence significantly reduces the computational complexity. The result attains close performance in comparison with theoretical bounds from non-practical policies, while benefiting from higher time efficiency than the unadapted MDP solution.Comment: 6 pages, 6 figures, submitted to IEEE International Conference on Communications 201
    • …
    corecore