1,553 research outputs found

    Cache-Oblivious and Data-Oblivious Sorting and Applications

    Get PDF
    Although external-memory sorting has been a classical algorithms abstraction and has been heavily studied in the literature, perhaps somewhat surprisingly, when data-obliviousness is a requirement, even very rudimentary questions remain open. Prior to our work, it is not even known how to construct a comparison-based, external-memory oblivious sorting algorithm that is optimal in IO-cost. We make a significant step forward in our understanding of external-memory, oblivious sorting algorithms. Not only do we construct a comparison-based, external-memory oblivious sorting algorithm that is optimal in IO-cost, our algorithm is also cache-agnostic in that the algorithm need not know the storage hierarchy\u27s internal parameters such as the cache and cache-line sizes. Our result immediately implies a cache-agnostic ORAM construction whose asymptotical IO-cost matches the best known cache-aware scheme. Last but not the least, we propose and adopt a new and stronger security notion for external-memory, oblivious algorithms and argue that this new notion is desirable for resisting possible cache-timing attacks. Thus our work also lays a foundation for the study of oblivious algorithms in the cache-agnostic model

    Data Oblivious Algorithms for Multicores

    Get PDF
    As secure processors such as Intel SGX (with hyperthreading) become widely adopted, there is a growing appetite for private analytics on big data. Most prior works on data-oblivious algorithms adopt the classical PRAM model to capture parallelism. However, it is widely understood that PRAM does not best capture realistic multicore processors, nor does it reflect parallel programming models adopted in practice. In this paper, we initiate the study of parallel data oblivious algorithms on realistic multicores, best captured by the binary fork-join model of computation. We first show that data-oblivious sorting can be accomplished by a binary fork-join algorithm with optimal total work and optimal (cache-oblivious) cache complexity, and in O(log n log log n) span (i.e., parallel time) that matches the best-known insecure algorithm. Using our sorting algorithm as a core primitive, we show how to data-obliviously simulate general PRAM algorithms in the binary fork-join model with non-trivial efficiency. We also present results for several applications including list ranking, Euler tour, tree contraction, connected components, and minimum spanning forest. For a subset of these applications, our data-oblivious algorithms asymptotically outperform the best known insecure algorithms. For other applications, we show data oblivious algorithms whose performance bounds match the best known insecure algorithms. Complementing these asymptotically efficient results, we present a practical variant of our sorting algorithm that is self-contained and potentially implementable. It has optimal caching cost, and it is only a log log n factor off from optimal work and about a log n factor off in terms of span; moreover, it achieves small constant factors in its bounds

    Cache-Oblivious Peeling of Random Hypergraphs

    Full text link
    The computation of a peeling order in a randomly generated hypergraph is the most time-consuming step in a number of constructions, such as perfect hashing schemes, random rr-SAT solvers, error-correcting codes, and approximate set encodings. While there exists a straightforward linear time algorithm, its poor I/O performance makes it impractical for hypergraphs whose size exceeds the available internal memory. We show how to reduce the computation of a peeling order to a small number of sequential scans and sorts, and analyze its I/O complexity in the cache-oblivious model. The resulting algorithm requires O(sort(n))O(\mathrm{sort}(n)) I/Os and O(nlogn)O(n \log n) time to peel a random hypergraph with nn edges. We experimentally evaluate the performance of our implementation of this algorithm in a real-world scenario by using the construction of minimal perfect hash functions (MPHF) as our test case: our algorithm builds a MPHF of 7.67.6 billion keys in less than 2121 hours on a single machine. The resulting data structure is both more space-efficient and faster than that obtained with the current state-of-the-art MPHF construction for large-scale key sets

    The Melbourne Shuffle: Improving Oblivious Storage in the Cloud

    Full text link
    We present a simple, efficient, and secure data-oblivious randomized shuffle algorithm. This is the first secure data-oblivious shuffle that is not based on sorting. Our method can be used to improve previous oblivious storage solutions for network-based outsourcing of data

    Online Sorting via Searching and Selection

    Full text link
    In this paper, we present a framework based on a simple data structure and parameterized algorithms for the problems of finding items in an unsorted list of linearly ordered items based on their rank (selection) or value (search). As a side-effect of answering these online selection and search queries, we progressively sort the list. Our algorithms are based on Hoare's Quickselect, and are parameterized based on the pivot selection method. For example, if we choose the pivot as the last item in a subinterval, our framework yields algorithms that will answer q<=n unique selection and/or search queries in a total of O(n log q) average time. After q=\Omega(n) queries the list is sorted. Each repeated selection query takes constant time, and each repeated search query takes O(log n) time. The two query types can be interleaved freely. By plugging different pivot selection methods into our framework, these results can, for example, become randomized expected time or deterministic worst-case time. Our methods are easy to implement, and we show they perform well in practice

    Simple I/O-efficient flow accumulation on grid terrains

    Full text link
    The flow accumulation problem for grid terrains takes as input a matrix of flow directions, that specifies for each cell of the grid to which of its eight neighbours any incoming water would flow. The problem is to compute, for each cell c, from how many cells of the terrain water would reach c. We show that this problem can be solved in O(scan(N)) I/Os for a terrain of N cells. Taking constant factors in the I/O-efficiency into account, our algorithm may be an order of magnitude faster than the previously known algorithm that is based on time-forward processing and needs O(sort(N)) I/Os.Comment: This paper is an exact copy of the paper that appeared in the abstract collection of the Workshop on Massive Data Algorithms, Aarhus, 200
    corecore