1,699 research outputs found

    Edge Caching in Dense Heterogeneous Cellular Networks with Massive MIMO Aided Self-backhaul

    Get PDF
    This paper focuses on edge caching in dense heterogeneous cellular networks (HetNets), in which small base stations (SBSs) with limited cache size store the popular contents, and massive multiple-input multiple-output (MIMO) aided macro base stations provide wireless self-backhaul when SBSs require the non-cached contents. Our aim is to address the effects of cell load and hit probability on the successful content delivery (SCD), and present the minimum required base station density for avoiding the access overload in an arbitrary small cell and backhaul overload in an arbitrary macrocell. The massive MIMO backhaul achievable rate without downlink channel estimation is derived to calculate the backhaul time, and the latency is also evaluated in such networks. The analytical results confirm that hit probability needs to be appropriately selected, in order to achieve SCD. The interplay between cache size and SCD is explicitly quantified. It is theoretically demonstrated that when non-cached contents are requested, the average delay of the non-cached content delivery could be comparable to the cached content delivery with the help of massive MIMO aided self-backhaul, if the average access rate of cached content delivery is lower than that of self-backhauled content delivery. Simulation results are presented to validate our analysis.Comment: Accepted to appear in IEEE Transactions on Wireless Communication

    Fundamental Limits of Cloud and Cache-Aided Interference Management with Multi-Antenna Edge Nodes

    Get PDF
    In fog-aided cellular systems, content delivery latency can be minimized by jointly optimizing edge caching and transmission strategies. In order to account for the cache capacity limitations at the Edge Nodes (ENs), transmission generally involves both fronthaul transfer from a cloud processor with access to the content library to the ENs, as well as wireless delivery from the ENs to the users. In this paper, the resulting problem is studied from an information-theoretic viewpoint by making the following practically relevant assumptions: 1) the ENs have multiple antennas; 2) only uncoded fractional caching is allowed; 3) the fronthaul links are used to send fractions of contents; and 4) the ENs are constrained to use one-shot linear precoding on the wireless channel. Assuming offline proactive caching and focusing on a high signal-to-noise ratio (SNR) latency metric, the optimal information-theoretic performance is investigated under both serial and pipelined fronthaul-edge transmission modes. The analysis characterizes the minimum high-SNR latency in terms of Normalized Delivery Time (NDT) for worst-case users' demands. The characterization is exact for a subset of system parameters, and is generally optimal within a multiplicative factor of 3/2 for the serial case and of 2 for the pipelined case. The results bring insights into the optimal interplay between edge and cloud processing in fog-aided wireless networks as a function of system resources, including the number of antennas at the ENs, the ENs' cache capacity and the fronthaul capacity.Comment: 34 pages, 15 figures, submitte

    How Much Can D2D Communication Reduce Content Delivery Latency in Fog Networks with Edge Caching?

    Get PDF
    A Fog-Radio Access Network (F-RAN) is studied in which cache-enabled Edge Nodes (ENs) with dedicated fronthaul connections to the cloud aim at delivering contents to mobile users. Using an information-theoretic approach, this work tackles the problem of quantifying the potential latency reduction that can be obtained by enabling Device-to-Device (D2D) communication over out-of-band broadcast links. Following prior work, the Normalized Delivery Time (NDT) --- a metric that captures the high signal-to-noise ratio worst-case latency --- is adopted as the performance criterion of interest. Joint edge caching, downlink transmission, and D2D communication policies based on compress-and-forward are proposed that are shown to be information-theoretically optimal to within a constant multiplicative factor of two for all values of the problem parameters, and to achieve the minimum NDT for a number of special cases. The analysis provides insights on the role of D2D cooperation in improving the delivery latency.Comment: Submitted to the IEEE Transactions on Communication

    Cloud-Edge Non-Orthogonal Transmission for Fog Networks with Delayed CSI at the Cloud

    Full text link
    In a Fog Radio Access Network (F-RAN), the cloud processor (CP) collects channel state information (CSI) from the edge nodes (ENs) over fronthaul links. As a result, the CSI at the cloud is generally affected by an error due to outdating. In this work, the problem of content delivery based on fronthaul transmission and edge caching is studied from an information-theoretic perspective in the high signal-to-noise ratio (SNR) regime. For the set-up under study, under the assumption of perfect CSI, prior work has shown the (approximate or exact) optimality of a scheme in which the ENs transmit information received from the cloud and cached contents over orthogonal resources. In this work, it is demonstrated that a non-orthogonal transmission scheme is able to substantially improve the latency performance in the presence of imperfect CSI at the cloud.Comment: 5 pages, 4 figures, submitte

    A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-dense Networks

    Get PDF
    Heterogeneous ultra-dense networks enable ultra-high data rates and ultra-low latency through the use of dense sub-6 GHz and millimeter wave (mmWave) small cells with different antenna configurations. Existing work has widely studied spectral and energy efficiency in such networks and shown that high spectral and energy efficiency can be achieved. This article investigates the benefits of heterogeneous ultra-dense network architecture from the perspectives of three promising technologies, i.e., physical layer security, caching, and wireless energy harvesting, and provides enthusiastic outlook towards application of these technologies in heterogeneous ultra-dense networks. Based on the rationale of each technology, opportunities and challenges are identified to advance the research in this emerging network.Comment: Accepted to appear in IEEE Communications Magazin

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore